---
sort: 3
title: Scheduler
weight: 3
menu:
docs:
parent: "vmanomaly-components"
weight: 3
aliases:
- /anomaly-detection/components/scheduler.html
---
# Scheduler
Scheduler defines how often to run and make inferences, as well as what timerange to use to train the model.
Is specified in `scheduler` section of a config for VictoriaMetrics Anomaly Detection.
> **Note: Starting from [v1.11.0](/anomaly-detection/changelog#v1110) scheduler section in config supports multiple schedulers via aliasing.
Also, `vmanomaly` expects scheduler section to be named `schedulers`. Using old (flat) format with `scheduler` key is deprecated and will be removed in future versions.**
```yaml
schedulers:
scheduler_periodic_1m:
# class: "scheduler.periodic.PeriodicScheduler"
infer_every: "1m"
fit_every: "2m"
fit_window: "3h"
scheduler_periodic_5m:
# class: "scheduler.periodic.PeriodicScheduler"
infer_every: "5m"
fit_every: "10m"
fit_window: "3h"
...
```
Old-style configs (< [1.11.0](/anomaly-detection/changelog#v1110))
```yaml
scheduler:
# class: "scheduler.periodic.PeriodicScheduler"
infer_every: "1m"
fit_every: "2m"
fit_window: "3h"
...
```
will be **implicitly** converted to
```yaml
schedulers:
default_scheduler: # default scheduler alias, backward compatibility
# class: "scheduler.periodic.PeriodicScheduler"
infer_every: "1m"
fit_every: "2m"
fit_window: "3h"
...
```
## Parameters
`class`: str, default=`"scheduler.periodic.PeriodicScheduler"`,
options={`"scheduler.periodic.PeriodicScheduler"`, `"scheduler.oneoff.OneoffScheduler"`, `"scheduler.backtesting.BacktestingScheduler"`}
- `"scheduler.periodic.PeriodicScheduler"`: periodically runs the models on new data. Useful for consecutive re-trainings to counter [data drift](https://www.datacamp.com/tutorial/understanding-data-drift-model-drift) and model degradation over time.
- `"scheduler.oneoff.OneoffScheduler"`: runs the process once and exits. Useful for testing.
- `"scheduler.backtesting.BacktestingScheduler"`: imitates consecutive backtesting runs of OneoffScheduler. Runs the process once and exits. Use to get more granular control over testing on historical data.
**Depending on selected class, different parameters should be used**
## Periodic scheduler
### Parameters
For periodic scheduler parameters are defined as differences in times, expressed in difference units, e.g. days, hours, minutes, seconds.
Examples: `"50s"`, `"4m"`, `"3h"`, `"2d"`, `"1w"`.
|
Time granularity |
s |
seconds |
m |
minutes |
h |
hours |
d |
days |
w |
weeks |
Parameter |
Type |
Example |
Description |
fit_window |
str |
"14d" |
What time range to use for training the models. Must be at least 1 second. |
infer_every |
str |
"1m" |
How often a model will write its conclusions on newly added data. Must be at least 1 second. |
fit_every |
str, Optional |
"1h" |
How often to completely retrain the models. If missing value of infer_every is used and retrain on every inference run. |
### Periodic scheduler config example
```yaml
scheduler:
class: "scheduler.periodic.PeriodicScheduler"
fit_window: "14d"
infer_every: "1m"
fit_every: "1h"
```
This part of the config means that `vmanomaly` will calculate the time window of the previous 14 days and use it to train a model. Every hour model will be retrained again on 14 days’ data, which will include + 1 hour of new data. The time window is strictly the same 14 days and doesn't extend for the next retrains. Every minute `vmanomaly` will produce model inferences for newly added data points by using the model that is kept in memory at that time.
## Oneoff scheduler
### Parameters
For Oneoff scheduler timeframes can be defined in Unix time in seconds or ISO 8601 string format.
ISO format supported time zone offset formats are:
* Z (UTC)
* ±HH:MM
* ±HHMM
* ±HH
If a time zone is omitted, a timezone-naive datetime is used.
### Defining fitting timeframe
Format |
Parameter |
Type |
Example |
Description |
ISO 8601 |
fit_start_iso |
str |
"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01" |
Start datetime to use for training a model. ISO string or UNIX time in seconds. |
UNIX time |
fit_start_s |
float |
1648771200 |
ISO 8601 |
fit_end_iso |
str |
"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01" |
End datetime to use for training a model. Must be greater than fit_start_* . ISO string or UNIX time in seconds. |
UNIX time |
fit_end_s |
float |
1649548800 |
### Defining inference timeframe
Format |
Parameter |
Type |
Example |
Description |
ISO 8601 |
infer_start_iso |
str |
"2022-04-11T00:00:00Z", "2022-04-11T00:00:00+01:00", "2022-04-11T00:00:00+0100", "2022-04-11T00:00:00+01" |
Start datetime to use for a model inference. ISO string or UNIX time in seconds. |
UNIX time |
infer_start_s |
float |
1649635200 |
ISO 8601 |
infer_end_iso |
str |
"2022-04-14T00:00:00Z", "2022-04-14T00:00:00+01:00", "2022-04-14T00:00:00+0100", "2022-04-14T00:00:00+01" |
End datetime to use for a model inference. Must be greater than infer_start_* . ISO string or UNIX time in seconds. |
UNIX time |
infer_end_s |
float |
1649894400 |
### ISO format scheduler config example
```yaml
scheduler:
class: "scheduler.oneoff.OneoffScheduler"
fit_start_iso: "2022-04-01T00:00:00Z"
fit_end_iso: "2022-04-10T00:00:00Z"
infer_start_iso: "2022-04-11T00:00:00Z"
infer_end_iso: "2022-04-14T00:00:00Z"
```
### UNIX time format scheduler config example
```yaml
scheduler:
class: "scheduler.oneoff.OneoffScheduler"
fit_start_iso: 1648771200
fit_end_iso: 1649548800
infer_start_iso: 1649635200
infer_end_iso: 1649894400
```
## Backtesting scheduler
### Parameters
As for [Oneoff scheduler](#oneoff-scheduler), timeframes can be defined in Unix time in seconds or ISO 8601 string format.
ISO format supported time zone offset formats are:
* Z (UTC)
* ±HH:MM
* ±HHMM
* ±HH
If a time zone is omitted, a timezone-naive datetime is used.
### Defining overall timeframe
This timeframe will be used for slicing on intervals `(fit_window, infer_window == fit_every)`, starting from the *latest available* time point, which is `to_*` and going back, until no full `fit_window + infer_window` interval exists within the provided timeframe.
Format |
Parameter |
Type |
Example |
Description |
ISO 8601 |
from_iso |
str |
"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01" |
Start datetime to use for backtesting. |
UNIX time |
from_s |
float |
1648771200 |
ISO 8601 |
to_iso |
str |
"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01" |
End datetime to use for backtesting. Must be greater than from_start_* . |
UNIX time |
to_s |
float |
1649548800 |
### Defining training timeframe
The same *explicit* logic as in [Periodic scheduler](#periodic-scheduler)
Format |
Parameter |
Type |
Example |
Description |
ISO 8601 |
fit_window |
str |
"PT1M", "P1H" |
What time range to use for training the models. Must be at least 1 second. |
Prometheus-compatible |
"1m", "1h" |
### Defining inference timeframe
In `BacktestingScheduler`, the inference window is *implicitly* defined as a period between 2 consecutive model `fit_every` runs. The *latest* inference window starts from `to_s` - `fit_every` and ends on the *latest available* time point, which is `to_s`. The previous periods for fit/infer are defined the same way, by shifting `fit_every` seconds backwards until we get the last full fit period of `fit_window` size, which start is >= `from_s`.
Format |
Parameter |
Type |
Example |
Description |
ISO 8601 |
fit_every |
str |
"PT1M", "P1H" |
What time range to use previously trained model to infer on new data until next retrain happens. |
Prometheus-compatible |
"1m", "1h" |
### ISO format scheduler config example
```yaml
scheduler:
class: "scheduler.backtesting.BacktestingScheduler"
from_iso: '2021-01-01T00:00:00Z'
to_iso: '2021-01-14T00:00:00Z'
fit_window: 'P14D'
fit_every: 'PT1H'
```
### UNIX time format scheduler config example
```yaml
scheduler:
class: "scheduler.backtesting.BacktestingScheduler"
from_s: 167253120
to_s: 167443200
fit_window: '14d'
fit_every: '1h'
```