/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package grpc import ( "context" "errors" "fmt" "io" "math" "net" "net/http" "reflect" "runtime" "strings" "sync" "sync/atomic" "time" "golang.org/x/net/trace" "google.golang.org/grpc/codes" "google.golang.org/grpc/credentials" "google.golang.org/grpc/encoding" "google.golang.org/grpc/encoding/proto" "google.golang.org/grpc/grpclog" "google.golang.org/grpc/internal" "google.golang.org/grpc/internal/binarylog" "google.golang.org/grpc/internal/channelz" "google.golang.org/grpc/internal/grpcrand" "google.golang.org/grpc/internal/grpcsync" "google.golang.org/grpc/internal/transport" "google.golang.org/grpc/keepalive" "google.golang.org/grpc/metadata" "google.golang.org/grpc/peer" "google.golang.org/grpc/stats" "google.golang.org/grpc/status" "google.golang.org/grpc/tap" ) const ( defaultServerMaxReceiveMessageSize = 1024 * 1024 * 4 defaultServerMaxSendMessageSize = math.MaxInt32 // Server transports are tracked in a map which is keyed on listener // address. For regular gRPC traffic, connections are accepted in Serve() // through a call to Accept(), and we use the actual listener address as key // when we add it to the map. But for connections received through // ServeHTTP(), we do not have a listener and hence use this dummy value. listenerAddressForServeHTTP = "listenerAddressForServeHTTP" ) func init() { internal.GetServerCredentials = func(srv *Server) credentials.TransportCredentials { return srv.opts.creds } internal.DrainServerTransports = func(srv *Server, addr string) { srv.drainServerTransports(addr) } internal.AddExtraServerOptions = func(opt ...ServerOption) { extraServerOptions = opt } internal.ClearExtraServerOptions = func() { extraServerOptions = nil } internal.JoinServerOptions = newJoinServerOption } var statusOK = status.New(codes.OK, "") var logger = grpclog.Component("core") type methodHandler func(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor UnaryServerInterceptor) (interface{}, error) // MethodDesc represents an RPC service's method specification. type MethodDesc struct { MethodName string Handler methodHandler } // ServiceDesc represents an RPC service's specification. type ServiceDesc struct { ServiceName string // The pointer to the service interface. Used to check whether the user // provided implementation satisfies the interface requirements. HandlerType interface{} Methods []MethodDesc Streams []StreamDesc Metadata interface{} } // serviceInfo wraps information about a service. It is very similar to // ServiceDesc and is constructed from it for internal purposes. type serviceInfo struct { // Contains the implementation for the methods in this service. serviceImpl interface{} methods map[string]*MethodDesc streams map[string]*StreamDesc mdata interface{} } type serverWorkerData struct { st transport.ServerTransport wg *sync.WaitGroup stream *transport.Stream } // Server is a gRPC server to serve RPC requests. type Server struct { opts serverOptions mu sync.Mutex // guards following lis map[net.Listener]bool // conns contains all active server transports. It is a map keyed on a // listener address with the value being the set of active transports // belonging to that listener. conns map[string]map[transport.ServerTransport]bool serve bool drain bool cv *sync.Cond // signaled when connections close for GracefulStop services map[string]*serviceInfo // service name -> service info events trace.EventLog quit *grpcsync.Event done *grpcsync.Event channelzRemoveOnce sync.Once serveWG sync.WaitGroup // counts active Serve goroutines for GracefulStop channelzID *channelz.Identifier czData *channelzData serverWorkerChannels []chan *serverWorkerData } type serverOptions struct { creds credentials.TransportCredentials codec baseCodec cp Compressor dc Decompressor unaryInt UnaryServerInterceptor streamInt StreamServerInterceptor chainUnaryInts []UnaryServerInterceptor chainStreamInts []StreamServerInterceptor inTapHandle tap.ServerInHandle statsHandlers []stats.Handler maxConcurrentStreams uint32 maxReceiveMessageSize int maxSendMessageSize int unknownStreamDesc *StreamDesc keepaliveParams keepalive.ServerParameters keepalivePolicy keepalive.EnforcementPolicy initialWindowSize int32 initialConnWindowSize int32 writeBufferSize int readBufferSize int connectionTimeout time.Duration maxHeaderListSize *uint32 headerTableSize *uint32 numServerWorkers uint32 } var defaultServerOptions = serverOptions{ maxReceiveMessageSize: defaultServerMaxReceiveMessageSize, maxSendMessageSize: defaultServerMaxSendMessageSize, connectionTimeout: 120 * time.Second, writeBufferSize: defaultWriteBufSize, readBufferSize: defaultReadBufSize, } var extraServerOptions []ServerOption // A ServerOption sets options such as credentials, codec and keepalive parameters, etc. type ServerOption interface { apply(*serverOptions) } // EmptyServerOption does not alter the server configuration. It can be embedded // in another structure to build custom server options. // // # Experimental // // Notice: This type is EXPERIMENTAL and may be changed or removed in a // later release. type EmptyServerOption struct{} func (EmptyServerOption) apply(*serverOptions) {} // funcServerOption wraps a function that modifies serverOptions into an // implementation of the ServerOption interface. type funcServerOption struct { f func(*serverOptions) } func (fdo *funcServerOption) apply(do *serverOptions) { fdo.f(do) } func newFuncServerOption(f func(*serverOptions)) *funcServerOption { return &funcServerOption{ f: f, } } // joinServerOption provides a way to combine arbitrary number of server // options into one. type joinServerOption struct { opts []ServerOption } func (mdo *joinServerOption) apply(do *serverOptions) { for _, opt := range mdo.opts { opt.apply(do) } } func newJoinServerOption(opts ...ServerOption) ServerOption { return &joinServerOption{opts: opts} } // WriteBufferSize determines how much data can be batched before doing a write on the wire. // The corresponding memory allocation for this buffer will be twice the size to keep syscalls low. // The default value for this buffer is 32KB. // Zero will disable the write buffer such that each write will be on underlying connection. // Note: A Send call may not directly translate to a write. func WriteBufferSize(s int) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.writeBufferSize = s }) } // ReadBufferSize lets you set the size of read buffer, this determines how much data can be read at most // for one read syscall. // The default value for this buffer is 32KB. // Zero will disable read buffer for a connection so data framer can access the underlying // conn directly. func ReadBufferSize(s int) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.readBufferSize = s }) } // InitialWindowSize returns a ServerOption that sets window size for stream. // The lower bound for window size is 64K and any value smaller than that will be ignored. func InitialWindowSize(s int32) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.initialWindowSize = s }) } // InitialConnWindowSize returns a ServerOption that sets window size for a connection. // The lower bound for window size is 64K and any value smaller than that will be ignored. func InitialConnWindowSize(s int32) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.initialConnWindowSize = s }) } // KeepaliveParams returns a ServerOption that sets keepalive and max-age parameters for the server. func KeepaliveParams(kp keepalive.ServerParameters) ServerOption { if kp.Time > 0 && kp.Time < time.Second { logger.Warning("Adjusting keepalive ping interval to minimum period of 1s") kp.Time = time.Second } return newFuncServerOption(func(o *serverOptions) { o.keepaliveParams = kp }) } // KeepaliveEnforcementPolicy returns a ServerOption that sets keepalive enforcement policy for the server. func KeepaliveEnforcementPolicy(kep keepalive.EnforcementPolicy) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.keepalivePolicy = kep }) } // CustomCodec returns a ServerOption that sets a codec for message marshaling and unmarshaling. // // This will override any lookups by content-subtype for Codecs registered with RegisterCodec. // // Deprecated: register codecs using encoding.RegisterCodec. The server will // automatically use registered codecs based on the incoming requests' headers. // See also // https://github.com/grpc/grpc-go/blob/master/Documentation/encoding.md#using-a-codec. // Will be supported throughout 1.x. func CustomCodec(codec Codec) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.codec = codec }) } // ForceServerCodec returns a ServerOption that sets a codec for message // marshaling and unmarshaling. // // This will override any lookups by content-subtype for Codecs registered // with RegisterCodec. // // See Content-Type on // https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md#requests for // more details. Also see the documentation on RegisterCodec and // CallContentSubtype for more details on the interaction between encoding.Codec // and content-subtype. // // This function is provided for advanced users; prefer to register codecs // using encoding.RegisterCodec. // The server will automatically use registered codecs based on the incoming // requests' headers. See also // https://github.com/grpc/grpc-go/blob/master/Documentation/encoding.md#using-a-codec. // Will be supported throughout 1.x. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func ForceServerCodec(codec encoding.Codec) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.codec = codec }) } // RPCCompressor returns a ServerOption that sets a compressor for outbound // messages. For backward compatibility, all outbound messages will be sent // using this compressor, regardless of incoming message compression. By // default, server messages will be sent using the same compressor with which // request messages were sent. // // Deprecated: use encoding.RegisterCompressor instead. Will be supported // throughout 1.x. func RPCCompressor(cp Compressor) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.cp = cp }) } // RPCDecompressor returns a ServerOption that sets a decompressor for inbound // messages. It has higher priority than decompressors registered via // encoding.RegisterCompressor. // // Deprecated: use encoding.RegisterCompressor instead. Will be supported // throughout 1.x. func RPCDecompressor(dc Decompressor) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.dc = dc }) } // MaxMsgSize returns a ServerOption to set the max message size in bytes the server can receive. // If this is not set, gRPC uses the default limit. // // Deprecated: use MaxRecvMsgSize instead. Will be supported throughout 1.x. func MaxMsgSize(m int) ServerOption { return MaxRecvMsgSize(m) } // MaxRecvMsgSize returns a ServerOption to set the max message size in bytes the server can receive. // If this is not set, gRPC uses the default 4MB. func MaxRecvMsgSize(m int) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.maxReceiveMessageSize = m }) } // MaxSendMsgSize returns a ServerOption to set the max message size in bytes the server can send. // If this is not set, gRPC uses the default `math.MaxInt32`. func MaxSendMsgSize(m int) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.maxSendMessageSize = m }) } // MaxConcurrentStreams returns a ServerOption that will apply a limit on the number // of concurrent streams to each ServerTransport. func MaxConcurrentStreams(n uint32) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.maxConcurrentStreams = n }) } // Creds returns a ServerOption that sets credentials for server connections. func Creds(c credentials.TransportCredentials) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.creds = c }) } // UnaryInterceptor returns a ServerOption that sets the UnaryServerInterceptor for the // server. Only one unary interceptor can be installed. The construction of multiple // interceptors (e.g., chaining) can be implemented at the caller. func UnaryInterceptor(i UnaryServerInterceptor) ServerOption { return newFuncServerOption(func(o *serverOptions) { if o.unaryInt != nil { panic("The unary server interceptor was already set and may not be reset.") } o.unaryInt = i }) } // ChainUnaryInterceptor returns a ServerOption that specifies the chained interceptor // for unary RPCs. The first interceptor will be the outer most, // while the last interceptor will be the inner most wrapper around the real call. // All unary interceptors added by this method will be chained. func ChainUnaryInterceptor(interceptors ...UnaryServerInterceptor) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.chainUnaryInts = append(o.chainUnaryInts, interceptors...) }) } // StreamInterceptor returns a ServerOption that sets the StreamServerInterceptor for the // server. Only one stream interceptor can be installed. func StreamInterceptor(i StreamServerInterceptor) ServerOption { return newFuncServerOption(func(o *serverOptions) { if o.streamInt != nil { panic("The stream server interceptor was already set and may not be reset.") } o.streamInt = i }) } // ChainStreamInterceptor returns a ServerOption that specifies the chained interceptor // for streaming RPCs. The first interceptor will be the outer most, // while the last interceptor will be the inner most wrapper around the real call. // All stream interceptors added by this method will be chained. func ChainStreamInterceptor(interceptors ...StreamServerInterceptor) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.chainStreamInts = append(o.chainStreamInts, interceptors...) }) } // InTapHandle returns a ServerOption that sets the tap handle for all the server // transport to be created. Only one can be installed. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func InTapHandle(h tap.ServerInHandle) ServerOption { return newFuncServerOption(func(o *serverOptions) { if o.inTapHandle != nil { panic("The tap handle was already set and may not be reset.") } o.inTapHandle = h }) } // StatsHandler returns a ServerOption that sets the stats handler for the server. func StatsHandler(h stats.Handler) ServerOption { return newFuncServerOption(func(o *serverOptions) { if h == nil { logger.Error("ignoring nil parameter in grpc.StatsHandler ServerOption") // Do not allow a nil stats handler, which would otherwise cause // panics. return } o.statsHandlers = append(o.statsHandlers, h) }) } // UnknownServiceHandler returns a ServerOption that allows for adding a custom // unknown service handler. The provided method is a bidi-streaming RPC service // handler that will be invoked instead of returning the "unimplemented" gRPC // error whenever a request is received for an unregistered service or method. // The handling function and stream interceptor (if set) have full access to // the ServerStream, including its Context. func UnknownServiceHandler(streamHandler StreamHandler) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.unknownStreamDesc = &StreamDesc{ StreamName: "unknown_service_handler", Handler: streamHandler, // We need to assume that the users of the streamHandler will want to use both. ClientStreams: true, ServerStreams: true, } }) } // ConnectionTimeout returns a ServerOption that sets the timeout for // connection establishment (up to and including HTTP/2 handshaking) for all // new connections. If this is not set, the default is 120 seconds. A zero or // negative value will result in an immediate timeout. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func ConnectionTimeout(d time.Duration) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.connectionTimeout = d }) } // MaxHeaderListSize returns a ServerOption that sets the max (uncompressed) size // of header list that the server is prepared to accept. func MaxHeaderListSize(s uint32) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.maxHeaderListSize = &s }) } // HeaderTableSize returns a ServerOption that sets the size of dynamic // header table for stream. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func HeaderTableSize(s uint32) ServerOption { return newFuncServerOption(func(o *serverOptions) { o.headerTableSize = &s }) } // NumStreamWorkers returns a ServerOption that sets the number of worker // goroutines that should be used to process incoming streams. Setting this to // zero (default) will disable workers and spawn a new goroutine for each // stream. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func NumStreamWorkers(numServerWorkers uint32) ServerOption { // TODO: If/when this API gets stabilized (i.e. stream workers become the // only way streams are processed), change the behavior of the zero value to // a sane default. Preliminary experiments suggest that a value equal to the // number of CPUs available is most performant; requires thorough testing. return newFuncServerOption(func(o *serverOptions) { o.numServerWorkers = numServerWorkers }) } // serverWorkerResetThreshold defines how often the stack must be reset. Every // N requests, by spawning a new goroutine in its place, a worker can reset its // stack so that large stacks don't live in memory forever. 2^16 should allow // each goroutine stack to live for at least a few seconds in a typical // workload (assuming a QPS of a few thousand requests/sec). const serverWorkerResetThreshold = 1 << 16 // serverWorkers blocks on a *transport.Stream channel forever and waits for // data to be fed by serveStreams. This allows different requests to be // processed by the same goroutine, removing the need for expensive stack // re-allocations (see the runtime.morestack problem [1]). // // [1] https://github.com/golang/go/issues/18138 func (s *Server) serverWorker(ch chan *serverWorkerData) { // To make sure all server workers don't reset at the same time, choose a // random number of iterations before resetting. threshold := serverWorkerResetThreshold + grpcrand.Intn(serverWorkerResetThreshold) for completed := 0; completed < threshold; completed++ { data, ok := <-ch if !ok { return } s.handleStream(data.st, data.stream, s.traceInfo(data.st, data.stream)) data.wg.Done() } go s.serverWorker(ch) } // initServerWorkers creates worker goroutines and channels to process incoming // connections to reduce the time spent overall on runtime.morestack. func (s *Server) initServerWorkers() { s.serverWorkerChannels = make([]chan *serverWorkerData, s.opts.numServerWorkers) for i := uint32(0); i < s.opts.numServerWorkers; i++ { s.serverWorkerChannels[i] = make(chan *serverWorkerData) go s.serverWorker(s.serverWorkerChannels[i]) } } func (s *Server) stopServerWorkers() { for i := uint32(0); i < s.opts.numServerWorkers; i++ { close(s.serverWorkerChannels[i]) } } // NewServer creates a gRPC server which has no service registered and has not // started to accept requests yet. func NewServer(opt ...ServerOption) *Server { opts := defaultServerOptions for _, o := range extraServerOptions { o.apply(&opts) } for _, o := range opt { o.apply(&opts) } s := &Server{ lis: make(map[net.Listener]bool), opts: opts, conns: make(map[string]map[transport.ServerTransport]bool), services: make(map[string]*serviceInfo), quit: grpcsync.NewEvent(), done: grpcsync.NewEvent(), czData: new(channelzData), } chainUnaryServerInterceptors(s) chainStreamServerInterceptors(s) s.cv = sync.NewCond(&s.mu) if EnableTracing { _, file, line, _ := runtime.Caller(1) s.events = trace.NewEventLog("grpc.Server", fmt.Sprintf("%s:%d", file, line)) } if s.opts.numServerWorkers > 0 { s.initServerWorkers() } s.channelzID = channelz.RegisterServer(&channelzServer{s}, "") channelz.Info(logger, s.channelzID, "Server created") return s } // printf records an event in s's event log, unless s has been stopped. // REQUIRES s.mu is held. func (s *Server) printf(format string, a ...interface{}) { if s.events != nil { s.events.Printf(format, a...) } } // errorf records an error in s's event log, unless s has been stopped. // REQUIRES s.mu is held. func (s *Server) errorf(format string, a ...interface{}) { if s.events != nil { s.events.Errorf(format, a...) } } // ServiceRegistrar wraps a single method that supports service registration. It // enables users to pass concrete types other than grpc.Server to the service // registration methods exported by the IDL generated code. type ServiceRegistrar interface { // RegisterService registers a service and its implementation to the // concrete type implementing this interface. It may not be called // once the server has started serving. // desc describes the service and its methods and handlers. impl is the // service implementation which is passed to the method handlers. RegisterService(desc *ServiceDesc, impl interface{}) } // RegisterService registers a service and its implementation to the gRPC // server. It is called from the IDL generated code. This must be called before // invoking Serve. If ss is non-nil (for legacy code), its type is checked to // ensure it implements sd.HandlerType. func (s *Server) RegisterService(sd *ServiceDesc, ss interface{}) { if ss != nil { ht := reflect.TypeOf(sd.HandlerType).Elem() st := reflect.TypeOf(ss) if !st.Implements(ht) { logger.Fatalf("grpc: Server.RegisterService found the handler of type %v that does not satisfy %v", st, ht) } } s.register(sd, ss) } func (s *Server) register(sd *ServiceDesc, ss interface{}) { s.mu.Lock() defer s.mu.Unlock() s.printf("RegisterService(%q)", sd.ServiceName) if s.serve { logger.Fatalf("grpc: Server.RegisterService after Server.Serve for %q", sd.ServiceName) } if _, ok := s.services[sd.ServiceName]; ok { logger.Fatalf("grpc: Server.RegisterService found duplicate service registration for %q", sd.ServiceName) } info := &serviceInfo{ serviceImpl: ss, methods: make(map[string]*MethodDesc), streams: make(map[string]*StreamDesc), mdata: sd.Metadata, } for i := range sd.Methods { d := &sd.Methods[i] info.methods[d.MethodName] = d } for i := range sd.Streams { d := &sd.Streams[i] info.streams[d.StreamName] = d } s.services[sd.ServiceName] = info } // MethodInfo contains the information of an RPC including its method name and type. type MethodInfo struct { // Name is the method name only, without the service name or package name. Name string // IsClientStream indicates whether the RPC is a client streaming RPC. IsClientStream bool // IsServerStream indicates whether the RPC is a server streaming RPC. IsServerStream bool } // ServiceInfo contains unary RPC method info, streaming RPC method info and metadata for a service. type ServiceInfo struct { Methods []MethodInfo // Metadata is the metadata specified in ServiceDesc when registering service. Metadata interface{} } // GetServiceInfo returns a map from service names to ServiceInfo. // Service names include the package names, in the form of .. func (s *Server) GetServiceInfo() map[string]ServiceInfo { ret := make(map[string]ServiceInfo) for n, srv := range s.services { methods := make([]MethodInfo, 0, len(srv.methods)+len(srv.streams)) for m := range srv.methods { methods = append(methods, MethodInfo{ Name: m, IsClientStream: false, IsServerStream: false, }) } for m, d := range srv.streams { methods = append(methods, MethodInfo{ Name: m, IsClientStream: d.ClientStreams, IsServerStream: d.ServerStreams, }) } ret[n] = ServiceInfo{ Methods: methods, Metadata: srv.mdata, } } return ret } // ErrServerStopped indicates that the operation is now illegal because of // the server being stopped. var ErrServerStopped = errors.New("grpc: the server has been stopped") type listenSocket struct { net.Listener channelzID *channelz.Identifier } func (l *listenSocket) ChannelzMetric() *channelz.SocketInternalMetric { return &channelz.SocketInternalMetric{ SocketOptions: channelz.GetSocketOption(l.Listener), LocalAddr: l.Listener.Addr(), } } func (l *listenSocket) Close() error { err := l.Listener.Close() channelz.RemoveEntry(l.channelzID) channelz.Info(logger, l.channelzID, "ListenSocket deleted") return err } // Serve accepts incoming connections on the listener lis, creating a new // ServerTransport and service goroutine for each. The service goroutines // read gRPC requests and then call the registered handlers to reply to them. // Serve returns when lis.Accept fails with fatal errors. lis will be closed when // this method returns. // Serve will return a non-nil error unless Stop or GracefulStop is called. func (s *Server) Serve(lis net.Listener) error { s.mu.Lock() s.printf("serving") s.serve = true if s.lis == nil { // Serve called after Stop or GracefulStop. s.mu.Unlock() lis.Close() return ErrServerStopped } s.serveWG.Add(1) defer func() { s.serveWG.Done() if s.quit.HasFired() { // Stop or GracefulStop called; block until done and return nil. <-s.done.Done() } }() ls := &listenSocket{Listener: lis} s.lis[ls] = true defer func() { s.mu.Lock() if s.lis != nil && s.lis[ls] { ls.Close() delete(s.lis, ls) } s.mu.Unlock() }() var err error ls.channelzID, err = channelz.RegisterListenSocket(ls, s.channelzID, lis.Addr().String()) if err != nil { s.mu.Unlock() return err } s.mu.Unlock() channelz.Info(logger, ls.channelzID, "ListenSocket created") var tempDelay time.Duration // how long to sleep on accept failure for { rawConn, err := lis.Accept() if err != nil { if ne, ok := err.(interface { Temporary() bool }); ok && ne.Temporary() { if tempDelay == 0 { tempDelay = 5 * time.Millisecond } else { tempDelay *= 2 } if max := 1 * time.Second; tempDelay > max { tempDelay = max } s.mu.Lock() s.printf("Accept error: %v; retrying in %v", err, tempDelay) s.mu.Unlock() timer := time.NewTimer(tempDelay) select { case <-timer.C: case <-s.quit.Done(): timer.Stop() return nil } continue } s.mu.Lock() s.printf("done serving; Accept = %v", err) s.mu.Unlock() if s.quit.HasFired() { return nil } return err } tempDelay = 0 // Start a new goroutine to deal with rawConn so we don't stall this Accept // loop goroutine. // // Make sure we account for the goroutine so GracefulStop doesn't nil out // s.conns before this conn can be added. s.serveWG.Add(1) go func() { s.handleRawConn(lis.Addr().String(), rawConn) s.serveWG.Done() }() } } // handleRawConn forks a goroutine to handle a just-accepted connection that // has not had any I/O performed on it yet. func (s *Server) handleRawConn(lisAddr string, rawConn net.Conn) { if s.quit.HasFired() { rawConn.Close() return } rawConn.SetDeadline(time.Now().Add(s.opts.connectionTimeout)) // Finish handshaking (HTTP2) st := s.newHTTP2Transport(rawConn) rawConn.SetDeadline(time.Time{}) if st == nil { return } if !s.addConn(lisAddr, st) { return } go func() { s.serveStreams(st) s.removeConn(lisAddr, st) }() } func (s *Server) drainServerTransports(addr string) { s.mu.Lock() conns := s.conns[addr] for st := range conns { st.Drain() } s.mu.Unlock() } // newHTTP2Transport sets up a http/2 transport (using the // gRPC http2 server transport in transport/http2_server.go). func (s *Server) newHTTP2Transport(c net.Conn) transport.ServerTransport { config := &transport.ServerConfig{ MaxStreams: s.opts.maxConcurrentStreams, ConnectionTimeout: s.opts.connectionTimeout, Credentials: s.opts.creds, InTapHandle: s.opts.inTapHandle, StatsHandlers: s.opts.statsHandlers, KeepaliveParams: s.opts.keepaliveParams, KeepalivePolicy: s.opts.keepalivePolicy, InitialWindowSize: s.opts.initialWindowSize, InitialConnWindowSize: s.opts.initialConnWindowSize, WriteBufferSize: s.opts.writeBufferSize, ReadBufferSize: s.opts.readBufferSize, ChannelzParentID: s.channelzID, MaxHeaderListSize: s.opts.maxHeaderListSize, HeaderTableSize: s.opts.headerTableSize, } st, err := transport.NewServerTransport(c, config) if err != nil { s.mu.Lock() s.errorf("NewServerTransport(%q) failed: %v", c.RemoteAddr(), err) s.mu.Unlock() // ErrConnDispatched means that the connection was dispatched away from // gRPC; those connections should be left open. if err != credentials.ErrConnDispatched { // Don't log on ErrConnDispatched and io.EOF to prevent log spam. if err != io.EOF { channelz.Info(logger, s.channelzID, "grpc: Server.Serve failed to create ServerTransport: ", err) } c.Close() } return nil } return st } func (s *Server) serveStreams(st transport.ServerTransport) { defer st.Close() var wg sync.WaitGroup var roundRobinCounter uint32 st.HandleStreams(func(stream *transport.Stream) { wg.Add(1) if s.opts.numServerWorkers > 0 { data := &serverWorkerData{st: st, wg: &wg, stream: stream} select { case s.serverWorkerChannels[atomic.AddUint32(&roundRobinCounter, 1)%s.opts.numServerWorkers] <- data: default: // If all stream workers are busy, fallback to the default code path. go func() { s.handleStream(st, stream, s.traceInfo(st, stream)) wg.Done() }() } } else { go func() { defer wg.Done() s.handleStream(st, stream, s.traceInfo(st, stream)) }() } }, func(ctx context.Context, method string) context.Context { if !EnableTracing { return ctx } tr := trace.New("grpc.Recv."+methodFamily(method), method) return trace.NewContext(ctx, tr) }) wg.Wait() } var _ http.Handler = (*Server)(nil) // ServeHTTP implements the Go standard library's http.Handler // interface by responding to the gRPC request r, by looking up // the requested gRPC method in the gRPC server s. // // The provided HTTP request must have arrived on an HTTP/2 // connection. When using the Go standard library's server, // practically this means that the Request must also have arrived // over TLS. // // To share one port (such as 443 for https) between gRPC and an // existing http.Handler, use a root http.Handler such as: // // if r.ProtoMajor == 2 && strings.HasPrefix( // r.Header.Get("Content-Type"), "application/grpc") { // grpcServer.ServeHTTP(w, r) // } else { // yourMux.ServeHTTP(w, r) // } // // Note that ServeHTTP uses Go's HTTP/2 server implementation which is totally // separate from grpc-go's HTTP/2 server. Performance and features may vary // between the two paths. ServeHTTP does not support some gRPC features // available through grpc-go's HTTP/2 server. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func (s *Server) ServeHTTP(w http.ResponseWriter, r *http.Request) { st, err := transport.NewServerHandlerTransport(w, r, s.opts.statsHandlers) if err != nil { http.Error(w, err.Error(), http.StatusInternalServerError) return } if !s.addConn(listenerAddressForServeHTTP, st) { return } defer s.removeConn(listenerAddressForServeHTTP, st) s.serveStreams(st) } // traceInfo returns a traceInfo and associates it with stream, if tracing is enabled. // If tracing is not enabled, it returns nil. func (s *Server) traceInfo(st transport.ServerTransport, stream *transport.Stream) (trInfo *traceInfo) { if !EnableTracing { return nil } tr, ok := trace.FromContext(stream.Context()) if !ok { return nil } trInfo = &traceInfo{ tr: tr, firstLine: firstLine{ client: false, remoteAddr: st.RemoteAddr(), }, } if dl, ok := stream.Context().Deadline(); ok { trInfo.firstLine.deadline = time.Until(dl) } return trInfo } func (s *Server) addConn(addr string, st transport.ServerTransport) bool { s.mu.Lock() defer s.mu.Unlock() if s.conns == nil { st.Close() return false } if s.drain { // Transport added after we drained our existing conns: drain it // immediately. st.Drain() } if s.conns[addr] == nil { // Create a map entry if this is the first connection on this listener. s.conns[addr] = make(map[transport.ServerTransport]bool) } s.conns[addr][st] = true return true } func (s *Server) removeConn(addr string, st transport.ServerTransport) { s.mu.Lock() defer s.mu.Unlock() conns := s.conns[addr] if conns != nil { delete(conns, st) if len(conns) == 0 { // If the last connection for this address is being removed, also // remove the map entry corresponding to the address. This is used // in GracefulStop() when waiting for all connections to be closed. delete(s.conns, addr) } s.cv.Broadcast() } } func (s *Server) channelzMetric() *channelz.ServerInternalMetric { return &channelz.ServerInternalMetric{ CallsStarted: atomic.LoadInt64(&s.czData.callsStarted), CallsSucceeded: atomic.LoadInt64(&s.czData.callsSucceeded), CallsFailed: atomic.LoadInt64(&s.czData.callsFailed), LastCallStartedTimestamp: time.Unix(0, atomic.LoadInt64(&s.czData.lastCallStartedTime)), } } func (s *Server) incrCallsStarted() { atomic.AddInt64(&s.czData.callsStarted, 1) atomic.StoreInt64(&s.czData.lastCallStartedTime, time.Now().UnixNano()) } func (s *Server) incrCallsSucceeded() { atomic.AddInt64(&s.czData.callsSucceeded, 1) } func (s *Server) incrCallsFailed() { atomic.AddInt64(&s.czData.callsFailed, 1) } func (s *Server) sendResponse(t transport.ServerTransport, stream *transport.Stream, msg interface{}, cp Compressor, opts *transport.Options, comp encoding.Compressor) error { data, err := encode(s.getCodec(stream.ContentSubtype()), msg) if err != nil { channelz.Error(logger, s.channelzID, "grpc: server failed to encode response: ", err) return err } compData, err := compress(data, cp, comp) if err != nil { channelz.Error(logger, s.channelzID, "grpc: server failed to compress response: ", err) return err } hdr, payload := msgHeader(data, compData) // TODO(dfawley): should we be checking len(data) instead? if len(payload) > s.opts.maxSendMessageSize { return status.Errorf(codes.ResourceExhausted, "grpc: trying to send message larger than max (%d vs. %d)", len(payload), s.opts.maxSendMessageSize) } err = t.Write(stream, hdr, payload, opts) if err == nil { for _, sh := range s.opts.statsHandlers { sh.HandleRPC(stream.Context(), outPayload(false, msg, data, payload, time.Now())) } } return err } // chainUnaryServerInterceptors chains all unary server interceptors into one. func chainUnaryServerInterceptors(s *Server) { // Prepend opts.unaryInt to the chaining interceptors if it exists, since unaryInt will // be executed before any other chained interceptors. interceptors := s.opts.chainUnaryInts if s.opts.unaryInt != nil { interceptors = append([]UnaryServerInterceptor{s.opts.unaryInt}, s.opts.chainUnaryInts...) } var chainedInt UnaryServerInterceptor if len(interceptors) == 0 { chainedInt = nil } else if len(interceptors) == 1 { chainedInt = interceptors[0] } else { chainedInt = chainUnaryInterceptors(interceptors) } s.opts.unaryInt = chainedInt } func chainUnaryInterceptors(interceptors []UnaryServerInterceptor) UnaryServerInterceptor { return func(ctx context.Context, req interface{}, info *UnaryServerInfo, handler UnaryHandler) (interface{}, error) { // the struct ensures the variables are allocated together, rather than separately, since we // know they should be garbage collected together. This saves 1 allocation and decreases // time/call by about 10% on the microbenchmark. var state struct { i int next UnaryHandler } state.next = func(ctx context.Context, req interface{}) (interface{}, error) { if state.i == len(interceptors)-1 { return interceptors[state.i](ctx, req, info, handler) } state.i++ return interceptors[state.i-1](ctx, req, info, state.next) } return state.next(ctx, req) } } func (s *Server) processUnaryRPC(t transport.ServerTransport, stream *transport.Stream, info *serviceInfo, md *MethodDesc, trInfo *traceInfo) (err error) { shs := s.opts.statsHandlers if len(shs) != 0 || trInfo != nil || channelz.IsOn() { if channelz.IsOn() { s.incrCallsStarted() } var statsBegin *stats.Begin for _, sh := range shs { beginTime := time.Now() statsBegin = &stats.Begin{ BeginTime: beginTime, IsClientStream: false, IsServerStream: false, } sh.HandleRPC(stream.Context(), statsBegin) } if trInfo != nil { trInfo.tr.LazyLog(&trInfo.firstLine, false) } // The deferred error handling for tracing, stats handler and channelz are // combined into one function to reduce stack usage -- a defer takes ~56-64 // bytes on the stack, so overflowing the stack will require a stack // re-allocation, which is expensive. // // To maintain behavior similar to separate deferred statements, statements // should be executed in the reverse order. That is, tracing first, stats // handler second, and channelz last. Note that panics *within* defers will // lead to different behavior, but that's an acceptable compromise; that // would be undefined behavior territory anyway. defer func() { if trInfo != nil { if err != nil && err != io.EOF { trInfo.tr.LazyLog(&fmtStringer{"%v", []interface{}{err}}, true) trInfo.tr.SetError() } trInfo.tr.Finish() } for _, sh := range shs { end := &stats.End{ BeginTime: statsBegin.BeginTime, EndTime: time.Now(), } if err != nil && err != io.EOF { end.Error = toRPCErr(err) } sh.HandleRPC(stream.Context(), end) } if channelz.IsOn() { if err != nil && err != io.EOF { s.incrCallsFailed() } else { s.incrCallsSucceeded() } } }() } binlog := binarylog.GetMethodLogger(stream.Method()) if binlog != nil { ctx := stream.Context() md, _ := metadata.FromIncomingContext(ctx) logEntry := &binarylog.ClientHeader{ Header: md, MethodName: stream.Method(), PeerAddr: nil, } if deadline, ok := ctx.Deadline(); ok { logEntry.Timeout = time.Until(deadline) if logEntry.Timeout < 0 { logEntry.Timeout = 0 } } if a := md[":authority"]; len(a) > 0 { logEntry.Authority = a[0] } if peer, ok := peer.FromContext(ctx); ok { logEntry.PeerAddr = peer.Addr } binlog.Log(logEntry) } // comp and cp are used for compression. decomp and dc are used for // decompression. If comp and decomp are both set, they are the same; // however they are kept separate to ensure that at most one of the // compressor/decompressor variable pairs are set for use later. var comp, decomp encoding.Compressor var cp Compressor var dc Decompressor // If dc is set and matches the stream's compression, use it. Otherwise, try // to find a matching registered compressor for decomp. if rc := stream.RecvCompress(); s.opts.dc != nil && s.opts.dc.Type() == rc { dc = s.opts.dc } else if rc != "" && rc != encoding.Identity { decomp = encoding.GetCompressor(rc) if decomp == nil { st := status.Newf(codes.Unimplemented, "grpc: Decompressor is not installed for grpc-encoding %q", rc) t.WriteStatus(stream, st) return st.Err() } } // If cp is set, use it. Otherwise, attempt to compress the response using // the incoming message compression method. // // NOTE: this needs to be ahead of all handling, https://github.com/grpc/grpc-go/issues/686. if s.opts.cp != nil { cp = s.opts.cp stream.SetSendCompress(cp.Type()) } else if rc := stream.RecvCompress(); rc != "" && rc != encoding.Identity { // Legacy compressor not specified; attempt to respond with same encoding. comp = encoding.GetCompressor(rc) if comp != nil { stream.SetSendCompress(rc) } } var payInfo *payloadInfo if len(shs) != 0 || binlog != nil { payInfo = &payloadInfo{} } d, err := recvAndDecompress(&parser{r: stream}, stream, dc, s.opts.maxReceiveMessageSize, payInfo, decomp) if err != nil { if e := t.WriteStatus(stream, status.Convert(err)); e != nil { channelz.Warningf(logger, s.channelzID, "grpc: Server.processUnaryRPC failed to write status %v", e) } return err } if channelz.IsOn() { t.IncrMsgRecv() } df := func(v interface{}) error { if err := s.getCodec(stream.ContentSubtype()).Unmarshal(d, v); err != nil { return status.Errorf(codes.Internal, "grpc: error unmarshalling request: %v", err) } for _, sh := range shs { sh.HandleRPC(stream.Context(), &stats.InPayload{ RecvTime: time.Now(), Payload: v, WireLength: payInfo.wireLength + headerLen, Data: d, Length: len(d), }) } if binlog != nil { binlog.Log(&binarylog.ClientMessage{ Message: d, }) } if trInfo != nil { trInfo.tr.LazyLog(&payload{sent: false, msg: v}, true) } return nil } ctx := NewContextWithServerTransportStream(stream.Context(), stream) reply, appErr := md.Handler(info.serviceImpl, ctx, df, s.opts.unaryInt) if appErr != nil { appStatus, ok := status.FromError(appErr) if !ok { // Convert non-status application error to a status error with code // Unknown, but handle context errors specifically. appStatus = status.FromContextError(appErr) appErr = appStatus.Err() } if trInfo != nil { trInfo.tr.LazyLog(stringer(appStatus.Message()), true) trInfo.tr.SetError() } if e := t.WriteStatus(stream, appStatus); e != nil { channelz.Warningf(logger, s.channelzID, "grpc: Server.processUnaryRPC failed to write status: %v", e) } if binlog != nil { if h, _ := stream.Header(); h.Len() > 0 { // Only log serverHeader if there was header. Otherwise it can // be trailer only. binlog.Log(&binarylog.ServerHeader{ Header: h, }) } binlog.Log(&binarylog.ServerTrailer{ Trailer: stream.Trailer(), Err: appErr, }) } return appErr } if trInfo != nil { trInfo.tr.LazyLog(stringer("OK"), false) } opts := &transport.Options{Last: true} if err := s.sendResponse(t, stream, reply, cp, opts, comp); err != nil { if err == io.EOF { // The entire stream is done (for unary RPC only). return err } if sts, ok := status.FromError(err); ok { if e := t.WriteStatus(stream, sts); e != nil { channelz.Warningf(logger, s.channelzID, "grpc: Server.processUnaryRPC failed to write status: %v", e) } } else { switch st := err.(type) { case transport.ConnectionError: // Nothing to do here. default: panic(fmt.Sprintf("grpc: Unexpected error (%T) from sendResponse: %v", st, st)) } } if binlog != nil { h, _ := stream.Header() binlog.Log(&binarylog.ServerHeader{ Header: h, }) binlog.Log(&binarylog.ServerTrailer{ Trailer: stream.Trailer(), Err: appErr, }) } return err } if binlog != nil { h, _ := stream.Header() binlog.Log(&binarylog.ServerHeader{ Header: h, }) binlog.Log(&binarylog.ServerMessage{ Message: reply, }) } if channelz.IsOn() { t.IncrMsgSent() } if trInfo != nil { trInfo.tr.LazyLog(&payload{sent: true, msg: reply}, true) } // TODO: Should we be logging if writing status failed here, like above? // Should the logging be in WriteStatus? Should we ignore the WriteStatus // error or allow the stats handler to see it? err = t.WriteStatus(stream, statusOK) if binlog != nil { binlog.Log(&binarylog.ServerTrailer{ Trailer: stream.Trailer(), Err: appErr, }) } return err } // chainStreamServerInterceptors chains all stream server interceptors into one. func chainStreamServerInterceptors(s *Server) { // Prepend opts.streamInt to the chaining interceptors if it exists, since streamInt will // be executed before any other chained interceptors. interceptors := s.opts.chainStreamInts if s.opts.streamInt != nil { interceptors = append([]StreamServerInterceptor{s.opts.streamInt}, s.opts.chainStreamInts...) } var chainedInt StreamServerInterceptor if len(interceptors) == 0 { chainedInt = nil } else if len(interceptors) == 1 { chainedInt = interceptors[0] } else { chainedInt = chainStreamInterceptors(interceptors) } s.opts.streamInt = chainedInt } func chainStreamInterceptors(interceptors []StreamServerInterceptor) StreamServerInterceptor { return func(srv interface{}, ss ServerStream, info *StreamServerInfo, handler StreamHandler) error { // the struct ensures the variables are allocated together, rather than separately, since we // know they should be garbage collected together. This saves 1 allocation and decreases // time/call by about 10% on the microbenchmark. var state struct { i int next StreamHandler } state.next = func(srv interface{}, ss ServerStream) error { if state.i == len(interceptors)-1 { return interceptors[state.i](srv, ss, info, handler) } state.i++ return interceptors[state.i-1](srv, ss, info, state.next) } return state.next(srv, ss) } } func (s *Server) processStreamingRPC(t transport.ServerTransport, stream *transport.Stream, info *serviceInfo, sd *StreamDesc, trInfo *traceInfo) (err error) { if channelz.IsOn() { s.incrCallsStarted() } shs := s.opts.statsHandlers var statsBegin *stats.Begin if len(shs) != 0 { beginTime := time.Now() statsBegin = &stats.Begin{ BeginTime: beginTime, IsClientStream: sd.ClientStreams, IsServerStream: sd.ServerStreams, } for _, sh := range shs { sh.HandleRPC(stream.Context(), statsBegin) } } ctx := NewContextWithServerTransportStream(stream.Context(), stream) ss := &serverStream{ ctx: ctx, t: t, s: stream, p: &parser{r: stream}, codec: s.getCodec(stream.ContentSubtype()), maxReceiveMessageSize: s.opts.maxReceiveMessageSize, maxSendMessageSize: s.opts.maxSendMessageSize, trInfo: trInfo, statsHandler: shs, } if len(shs) != 0 || trInfo != nil || channelz.IsOn() { // See comment in processUnaryRPC on defers. defer func() { if trInfo != nil { ss.mu.Lock() if err != nil && err != io.EOF { ss.trInfo.tr.LazyLog(&fmtStringer{"%v", []interface{}{err}}, true) ss.trInfo.tr.SetError() } ss.trInfo.tr.Finish() ss.trInfo.tr = nil ss.mu.Unlock() } if len(shs) != 0 { end := &stats.End{ BeginTime: statsBegin.BeginTime, EndTime: time.Now(), } if err != nil && err != io.EOF { end.Error = toRPCErr(err) } for _, sh := range shs { sh.HandleRPC(stream.Context(), end) } } if channelz.IsOn() { if err != nil && err != io.EOF { s.incrCallsFailed() } else { s.incrCallsSucceeded() } } }() } ss.binlog = binarylog.GetMethodLogger(stream.Method()) if ss.binlog != nil { md, _ := metadata.FromIncomingContext(ctx) logEntry := &binarylog.ClientHeader{ Header: md, MethodName: stream.Method(), PeerAddr: nil, } if deadline, ok := ctx.Deadline(); ok { logEntry.Timeout = time.Until(deadline) if logEntry.Timeout < 0 { logEntry.Timeout = 0 } } if a := md[":authority"]; len(a) > 0 { logEntry.Authority = a[0] } if peer, ok := peer.FromContext(ss.Context()); ok { logEntry.PeerAddr = peer.Addr } ss.binlog.Log(logEntry) } // If dc is set and matches the stream's compression, use it. Otherwise, try // to find a matching registered compressor for decomp. if rc := stream.RecvCompress(); s.opts.dc != nil && s.opts.dc.Type() == rc { ss.dc = s.opts.dc } else if rc != "" && rc != encoding.Identity { ss.decomp = encoding.GetCompressor(rc) if ss.decomp == nil { st := status.Newf(codes.Unimplemented, "grpc: Decompressor is not installed for grpc-encoding %q", rc) t.WriteStatus(ss.s, st) return st.Err() } } // If cp is set, use it. Otherwise, attempt to compress the response using // the incoming message compression method. // // NOTE: this needs to be ahead of all handling, https://github.com/grpc/grpc-go/issues/686. if s.opts.cp != nil { ss.cp = s.opts.cp stream.SetSendCompress(s.opts.cp.Type()) } else if rc := stream.RecvCompress(); rc != "" && rc != encoding.Identity { // Legacy compressor not specified; attempt to respond with same encoding. ss.comp = encoding.GetCompressor(rc) if ss.comp != nil { stream.SetSendCompress(rc) } } ss.ctx = newContextWithRPCInfo(ss.ctx, false, ss.codec, ss.cp, ss.comp) if trInfo != nil { trInfo.tr.LazyLog(&trInfo.firstLine, false) } var appErr error var server interface{} if info != nil { server = info.serviceImpl } if s.opts.streamInt == nil { appErr = sd.Handler(server, ss) } else { info := &StreamServerInfo{ FullMethod: stream.Method(), IsClientStream: sd.ClientStreams, IsServerStream: sd.ServerStreams, } appErr = s.opts.streamInt(server, ss, info, sd.Handler) } if appErr != nil { appStatus, ok := status.FromError(appErr) if !ok { // Convert non-status application error to a status error with code // Unknown, but handle context errors specifically. appStatus = status.FromContextError(appErr) appErr = appStatus.Err() } if trInfo != nil { ss.mu.Lock() ss.trInfo.tr.LazyLog(stringer(appStatus.Message()), true) ss.trInfo.tr.SetError() ss.mu.Unlock() } t.WriteStatus(ss.s, appStatus) if ss.binlog != nil { ss.binlog.Log(&binarylog.ServerTrailer{ Trailer: ss.s.Trailer(), Err: appErr, }) } // TODO: Should we log an error from WriteStatus here and below? return appErr } if trInfo != nil { ss.mu.Lock() ss.trInfo.tr.LazyLog(stringer("OK"), false) ss.mu.Unlock() } err = t.WriteStatus(ss.s, statusOK) if ss.binlog != nil { ss.binlog.Log(&binarylog.ServerTrailer{ Trailer: ss.s.Trailer(), Err: appErr, }) } return err } func (s *Server) handleStream(t transport.ServerTransport, stream *transport.Stream, trInfo *traceInfo) { sm := stream.Method() if sm != "" && sm[0] == '/' { sm = sm[1:] } pos := strings.LastIndex(sm, "/") if pos == -1 { if trInfo != nil { trInfo.tr.LazyLog(&fmtStringer{"Malformed method name %q", []interface{}{sm}}, true) trInfo.tr.SetError() } errDesc := fmt.Sprintf("malformed method name: %q", stream.Method()) if err := t.WriteStatus(stream, status.New(codes.Unimplemented, errDesc)); err != nil { if trInfo != nil { trInfo.tr.LazyLog(&fmtStringer{"%v", []interface{}{err}}, true) trInfo.tr.SetError() } channelz.Warningf(logger, s.channelzID, "grpc: Server.handleStream failed to write status: %v", err) } if trInfo != nil { trInfo.tr.Finish() } return } service := sm[:pos] method := sm[pos+1:] srv, knownService := s.services[service] if knownService { if md, ok := srv.methods[method]; ok { s.processUnaryRPC(t, stream, srv, md, trInfo) return } if sd, ok := srv.streams[method]; ok { s.processStreamingRPC(t, stream, srv, sd, trInfo) return } } // Unknown service, or known server unknown method. if unknownDesc := s.opts.unknownStreamDesc; unknownDesc != nil { s.processStreamingRPC(t, stream, nil, unknownDesc, trInfo) return } var errDesc string if !knownService { errDesc = fmt.Sprintf("unknown service %v", service) } else { errDesc = fmt.Sprintf("unknown method %v for service %v", method, service) } if trInfo != nil { trInfo.tr.LazyPrintf("%s", errDesc) trInfo.tr.SetError() } if err := t.WriteStatus(stream, status.New(codes.Unimplemented, errDesc)); err != nil { if trInfo != nil { trInfo.tr.LazyLog(&fmtStringer{"%v", []interface{}{err}}, true) trInfo.tr.SetError() } channelz.Warningf(logger, s.channelzID, "grpc: Server.handleStream failed to write status: %v", err) } if trInfo != nil { trInfo.tr.Finish() } } // The key to save ServerTransportStream in the context. type streamKey struct{} // NewContextWithServerTransportStream creates a new context from ctx and // attaches stream to it. // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func NewContextWithServerTransportStream(ctx context.Context, stream ServerTransportStream) context.Context { return context.WithValue(ctx, streamKey{}, stream) } // ServerTransportStream is a minimal interface that a transport stream must // implement. This can be used to mock an actual transport stream for tests of // handler code that use, for example, grpc.SetHeader (which requires some // stream to be in context). // // See also NewContextWithServerTransportStream. // // # Experimental // // Notice: This type is EXPERIMENTAL and may be changed or removed in a // later release. type ServerTransportStream interface { Method() string SetHeader(md metadata.MD) error SendHeader(md metadata.MD) error SetTrailer(md metadata.MD) error } // ServerTransportStreamFromContext returns the ServerTransportStream saved in // ctx. Returns nil if the given context has no stream associated with it // (which implies it is not an RPC invocation context). // // # Experimental // // Notice: This API is EXPERIMENTAL and may be changed or removed in a // later release. func ServerTransportStreamFromContext(ctx context.Context) ServerTransportStream { s, _ := ctx.Value(streamKey{}).(ServerTransportStream) return s } // Stop stops the gRPC server. It immediately closes all open // connections and listeners. // It cancels all active RPCs on the server side and the corresponding // pending RPCs on the client side will get notified by connection // errors. func (s *Server) Stop() { s.quit.Fire() defer func() { s.serveWG.Wait() s.done.Fire() }() s.channelzRemoveOnce.Do(func() { channelz.RemoveEntry(s.channelzID) }) s.mu.Lock() listeners := s.lis s.lis = nil conns := s.conns s.conns = nil // interrupt GracefulStop if Stop and GracefulStop are called concurrently. s.cv.Broadcast() s.mu.Unlock() for lis := range listeners { lis.Close() } for _, cs := range conns { for st := range cs { st.Close() } } if s.opts.numServerWorkers > 0 { s.stopServerWorkers() } s.mu.Lock() if s.events != nil { s.events.Finish() s.events = nil } s.mu.Unlock() } // GracefulStop stops the gRPC server gracefully. It stops the server from // accepting new connections and RPCs and blocks until all the pending RPCs are // finished. func (s *Server) GracefulStop() { s.quit.Fire() defer s.done.Fire() s.channelzRemoveOnce.Do(func() { channelz.RemoveEntry(s.channelzID) }) s.mu.Lock() if s.conns == nil { s.mu.Unlock() return } for lis := range s.lis { lis.Close() } s.lis = nil if !s.drain { for _, conns := range s.conns { for st := range conns { st.Drain() } } s.drain = true } // Wait for serving threads to be ready to exit. Only then can we be sure no // new conns will be created. s.mu.Unlock() s.serveWG.Wait() s.mu.Lock() for len(s.conns) != 0 { s.cv.Wait() } s.conns = nil if s.events != nil { s.events.Finish() s.events = nil } s.mu.Unlock() } // contentSubtype must be lowercase // cannot return nil func (s *Server) getCodec(contentSubtype string) baseCodec { if s.opts.codec != nil { return s.opts.codec } if contentSubtype == "" { return encoding.GetCodec(proto.Name) } codec := encoding.GetCodec(contentSubtype) if codec == nil { return encoding.GetCodec(proto.Name) } return codec } // SetHeader sets the header metadata to be sent from the server to the client. // The context provided must be the context passed to the server's handler. // // Streaming RPCs should prefer the SetHeader method of the ServerStream. // // When called multiple times, all the provided metadata will be merged. All // the metadata will be sent out when one of the following happens: // // - grpc.SendHeader is called, or for streaming handlers, stream.SendHeader. // - The first response message is sent. For unary handlers, this occurs when // the handler returns; for streaming handlers, this can happen when stream's // SendMsg method is called. // - An RPC status is sent out (error or success). This occurs when the handler // returns. // // SetHeader will fail if called after any of the events above. // // The error returned is compatible with the status package. However, the // status code will often not match the RPC status as seen by the client // application, and therefore, should not be relied upon for this purpose. func SetHeader(ctx context.Context, md metadata.MD) error { if md.Len() == 0 { return nil } stream := ServerTransportStreamFromContext(ctx) if stream == nil { return status.Errorf(codes.Internal, "grpc: failed to fetch the stream from the context %v", ctx) } return stream.SetHeader(md) } // SendHeader sends header metadata. It may be called at most once, and may not // be called after any event that causes headers to be sent (see SetHeader for // a complete list). The provided md and headers set by SetHeader() will be // sent. // // The error returned is compatible with the status package. However, the // status code will often not match the RPC status as seen by the client // application, and therefore, should not be relied upon for this purpose. func SendHeader(ctx context.Context, md metadata.MD) error { stream := ServerTransportStreamFromContext(ctx) if stream == nil { return status.Errorf(codes.Internal, "grpc: failed to fetch the stream from the context %v", ctx) } if err := stream.SendHeader(md); err != nil { return toRPCErr(err) } return nil } // SetTrailer sets the trailer metadata that will be sent when an RPC returns. // When called more than once, all the provided metadata will be merged. // // The error returned is compatible with the status package. However, the // status code will often not match the RPC status as seen by the client // application, and therefore, should not be relied upon for this purpose. func SetTrailer(ctx context.Context, md metadata.MD) error { if md.Len() == 0 { return nil } stream := ServerTransportStreamFromContext(ctx) if stream == nil { return status.Errorf(codes.Internal, "grpc: failed to fetch the stream from the context %v", ctx) } return stream.SetTrailer(md) } // Method returns the method string for the server context. The returned // string is in the format of "/service/method". func Method(ctx context.Context) (string, bool) { s := ServerTransportStreamFromContext(ctx) if s == nil { return "", false } return s.Method(), true } type channelzServer struct { s *Server } func (c *channelzServer) ChannelzMetric() *channelz.ServerInternalMetric { return c.s.channelzMetric() }