package netstorage import ( "container/heap" "errors" "flag" "fmt" "regexp" "sort" "sync" "sync/atomic" "time" "github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils" "github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage" "github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage/promdb" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer" "github.com/VictoriaMetrics/VictoriaMetrics/lib/storage" "github.com/VictoriaMetrics/metrics" "github.com/valyala/fastrand" ) var ( maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned from /api/v1/labels") maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned from /api/v1/label//values") maxTagValueSuffixesPerSearch = flag.Int("search.maxTagValueSuffixesPerSearch", 100e3, "The maximum number of tag value suffixes returned from /metrics/find") maxSamplesPerSeries = flag.Int("search.maxSamplesPerSeries", 30e6, "The maximum number of raw samples a single query can scan per each time series. This option allows limiting memory usage") maxSamplesPerQuery = flag.Int("search.maxSamplesPerQuery", 1e9, "The maximum number of raw samples a single query can process across all time series. This protects from heavy queries, which select unexpectedly high number of raw samples. See also -search.maxSamplesPerSeries") ) // Result is a single timeseries result. // // ProcessSearchQuery returns Result slice. type Result struct { // The name of the metric. MetricName storage.MetricName // Values are sorted by Timestamps. Values []float64 Timestamps []int64 } func (r *Result) reset() { r.MetricName.Reset() r.Values = r.Values[:0] r.Timestamps = r.Timestamps[:0] } // Results holds results returned from ProcessSearchQuery. type Results struct { tr storage.TimeRange deadline searchutils.Deadline packedTimeseries []packedTimeseries sr *storage.Search tbf *tmpBlocksFile } // Len returns the number of results in rss. func (rss *Results) Len() int { return len(rss.packedTimeseries) } // Cancel cancels rss work. func (rss *Results) Cancel() { rss.mustClose() } func (rss *Results) mustClose() { putStorageSearch(rss.sr) rss.sr = nil putTmpBlocksFile(rss.tbf) rss.tbf = nil } type timeseriesWork struct { mustStop *uint32 rss *Results pts *packedTimeseries f func(rs *Result, workerID uint) error doneCh chan error rowsProcessed int } func (tsw *timeseriesWork) reset() { tsw.mustStop = nil tsw.rss = nil tsw.pts = nil tsw.f = nil if n := len(tsw.doneCh); n > 0 { logger.Panicf("BUG: tsw.doneCh must be empty during reset; it contains %d items instead", n) } tsw.rowsProcessed = 0 } func getTimeseriesWork() *timeseriesWork { v := tswPool.Get() if v == nil { v = ×eriesWork{ doneCh: make(chan error, 1), } } return v.(*timeseriesWork) } func putTimeseriesWork(tsw *timeseriesWork) { tsw.reset() tswPool.Put(tsw) } var tswPool sync.Pool func scheduleTimeseriesWork(workChs []chan *timeseriesWork, tsw *timeseriesWork) { if len(workChs) == 1 { // Fast path for a single worker workChs[0] <- tsw return } attempts := 0 for { idx := fastrand.Uint32n(uint32(len(workChs))) select { case workChs[idx] <- tsw: return default: attempts++ if attempts >= len(workChs) { workChs[idx] <- tsw return } } } } func (tsw *timeseriesWork) do(r *Result, workerID uint) error { if atomic.LoadUint32(tsw.mustStop) != 0 { return nil } rss := tsw.rss if rss.deadline.Exceeded() { atomic.StoreUint32(tsw.mustStop, 1) return fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String()) } if err := tsw.pts.Unpack(r, rss.tbf, rss.tr); err != nil { atomic.StoreUint32(tsw.mustStop, 1) return fmt.Errorf("error during time series unpacking: %w", err) } if len(r.Timestamps) > 0 { if err := tsw.f(r, workerID); err != nil { atomic.StoreUint32(tsw.mustStop, 1) return err } } tsw.rowsProcessed = len(r.Values) return nil } func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) { v := resultPool.Get() if v == nil { v = &result{} } r := v.(*result) for tsw := range ch { err := tsw.do(&r.rs, workerID) tsw.doneCh <- err } currentTime := fasttime.UnixTimestamp() if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 { // Reset r.rs in order to preseve memory usage after processing big time series with millions of rows. r.rs = Result{} r.lastResetTime = currentTime } resultPool.Put(r) } type result struct { rs Result lastResetTime uint64 } var resultPool sync.Pool // RunParallel runs f in parallel for all the results from rss. // // f shouldn't hold references to rs after returning. // workerID is the id of the worker goroutine that calls f. // Data processing is immediately stopped if f returns non-nil error. // // rss becomes unusable after the call to RunParallel. func (rss *Results) RunParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) error { qt = qt.NewChild("parallel process of fetched data") defer rss.mustClose() // Spin up local workers. // // Do not use a global workChs with a global pool of workers, since it may lead to a deadlock in the following case: // - RunParallel is called with f, which blocks without forward progress. // - All the workers in the global pool became blocked in f. // - workChs is filled up, so it cannot accept new work items from other RunParallel calls. workers := len(rss.packedTimeseries) if workers > gomaxprocs { workers = gomaxprocs } if workers < 1 { workers = 1 } workChs := make([]chan *timeseriesWork, workers) var workChsWG sync.WaitGroup for i := 0; i < workers; i++ { workChs[i] = make(chan *timeseriesWork, 16) workChsWG.Add(1) go func(workerID int) { defer workChsWG.Done() timeseriesWorker(workChs[workerID], uint(workerID)) }(i) } // Feed workers with work. tsws := make([]*timeseriesWork, len(rss.packedTimeseries)) var mustStop uint32 for i := range rss.packedTimeseries { tsw := getTimeseriesWork() tsw.rss = rss tsw.pts = &rss.packedTimeseries[i] tsw.f = f tsw.mustStop = &mustStop scheduleTimeseriesWork(workChs, tsw) tsws[i] = tsw } seriesProcessedTotal := len(rss.packedTimeseries) rss.packedTimeseries = rss.packedTimeseries[:0] // Wait until work is complete. var firstErr error rowsProcessedTotal := 0 for _, tsw := range tsws { if err := <-tsw.doneCh; err != nil && firstErr == nil { // Return just the first error, since other errors are likely duplicate the first error. firstErr = err } rowsReadPerSeries.Update(float64(tsw.rowsProcessed)) rowsProcessedTotal += tsw.rowsProcessed putTimeseriesWork(tsw) } rowsReadPerQuery.Update(float64(rowsProcessedTotal)) seriesReadPerQuery.Update(float64(seriesProcessedTotal)) // Shut down local workers for _, workCh := range workChs { close(workCh) } workChsWG.Wait() qt.Donef("series=%d, samples=%d", seriesProcessedTotal, rowsProcessedTotal) return firstErr } var ( rowsReadPerSeries = metrics.NewHistogram(`vm_rows_read_per_series`) rowsReadPerQuery = metrics.NewHistogram(`vm_rows_read_per_query`) seriesReadPerQuery = metrics.NewHistogram(`vm_series_read_per_query`) ) var gomaxprocs = cgroup.AvailableCPUs() type packedTimeseries struct { metricName string brs []blockRef pd *promData } type promData struct { values []float64 timestamps []int64 } type unpackWorkItem struct { br blockRef tr storage.TimeRange } type unpackWork struct { tbf *tmpBlocksFile ws []unpackWorkItem sbs []*sortBlock doneCh chan error } func (upw *unpackWork) reset() { upw.tbf = nil ws := upw.ws for i := range ws { w := &ws[i] w.br = blockRef{} w.tr = storage.TimeRange{} } upw.ws = upw.ws[:0] sbs := upw.sbs for i := range sbs { sbs[i] = nil } upw.sbs = upw.sbs[:0] if n := len(upw.doneCh); n > 0 { logger.Panicf("BUG: upw.doneCh must be empty; it contains %d items now", n) } } func (upw *unpackWork) unpack(tmpBlock *storage.Block) { for _, w := range upw.ws { sb := getSortBlock() if err := sb.unpackFrom(tmpBlock, upw.tbf, w.br, w.tr); err != nil { putSortBlock(sb) upw.doneCh <- fmt.Errorf("cannot unpack block: %w", err) return } upw.sbs = append(upw.sbs, sb) } upw.doneCh <- nil } func getUnpackWork() *unpackWork { v := unpackWorkPool.Get() if v != nil { return v.(*unpackWork) } return &unpackWork{ doneCh: make(chan error, 1), } } func putUnpackWork(upw *unpackWork) { upw.reset() unpackWorkPool.Put(upw) } var unpackWorkPool sync.Pool func scheduleUnpackWork(workChs []chan *unpackWork, uw *unpackWork) { if len(workChs) == 1 { // Fast path for a single worker workChs[0] <- uw return } attempts := 0 for { idx := fastrand.Uint32n(uint32(len(workChs))) select { case workChs[idx] <- uw: return default: attempts++ if attempts >= len(workChs) { workChs[idx] <- uw return } } } } func unpackWorker(ch <-chan *unpackWork) { v := tmpBlockPool.Get() if v == nil { v = &storage.Block{} } tmpBlock := v.(*storage.Block) for upw := range ch { upw.unpack(tmpBlock) } tmpBlockPool.Put(v) } var tmpBlockPool sync.Pool // unpackBatchSize is the maximum number of blocks that may be unpacked at once by a single goroutine. // // It is better to load a single goroutine for up to one second on a system with many CPU cores // in order to reduce inter-CPU memory ping-pong. // A single goroutine can unpack up to 40 millions of rows per second, while a single block contains up to 8K rows. // So the batch size should be 40M / 8K = 5K. var unpackBatchSize = 5000 // Unpack unpacks pts to dst. func (pts *packedTimeseries) Unpack(dst *Result, tbf *tmpBlocksFile, tr storage.TimeRange) error { dst.reset() if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil { return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err) } // Spin up local workers. // Do not use global workers pool, since it increases inter-CPU memory ping-poing, // which reduces the scalability on systems with many CPU cores. brsLen := len(pts.brs) workers := brsLen / unpackBatchSize if workers > gomaxprocs { workers = gomaxprocs } if workers < 1 { workers = 1 } workChs := make([]chan *unpackWork, workers) var workChsWG sync.WaitGroup for i := 0; i < workers; i++ { // Use unbuffered channel on purpose, since there are high chances // that only a single unpackWork is needed to unpack. // The unbuffered channel should reduce inter-CPU ping-pong in this case, // which should improve the performance in a system with many CPU cores. workChs[i] = make(chan *unpackWork) workChsWG.Add(1) go func(workerID int) { defer workChsWG.Done() unpackWorker(workChs[workerID]) }(i) } // Feed workers with work upws := make([]*unpackWork, 0, 1+brsLen/unpackBatchSize) upw := getUnpackWork() upw.tbf = tbf for _, br := range pts.brs { if len(upw.ws) >= unpackBatchSize { scheduleUnpackWork(workChs, upw) upws = append(upws, upw) upw = getUnpackWork() upw.tbf = tbf } upw.ws = append(upw.ws, unpackWorkItem{ br: br, tr: tr, }) } scheduleUnpackWork(workChs, upw) upws = append(upws, upw) pts.brs = pts.brs[:0] // Wait until work is complete samples := 0 sbs := make([]*sortBlock, 0, brsLen) var firstErr error for _, upw := range upws { if err := <-upw.doneCh; err != nil && firstErr == nil { // Return the first error only, since other errors are likely the same. firstErr = err } if firstErr == nil { for _, sb := range upw.sbs { samples += len(sb.Timestamps) } if *maxSamplesPerSeries <= 0 || samples < *maxSamplesPerSeries { sbs = append(sbs, upw.sbs...) } else { firstErr = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+ "or reduce time range for the query", *maxSamplesPerSeries) } } if firstErr != nil { for _, sb := range upw.sbs { putSortBlock(sb) } } putUnpackWork(upw) } // Shut down local workers for _, workCh := range workChs { close(workCh) } workChsWG.Wait() if firstErr != nil { return firstErr } if pts.pd != nil { // Add data from Prometheus to dst. // It usually has smaller timestamps than the data from sbs, so put it first. dst.Values = append(dst.Values, pts.pd.values...) dst.Timestamps = append(dst.Timestamps, pts.pd.timestamps...) } dedupInterval := storage.GetDedupInterval(tr.MinTimestamp) mergeSortBlocks(dst, sbs, dedupInterval) if pts.pd != nil { if !sort.IsSorted(dst) { sort.Sort(dst) } pts.pd = nil } return nil } // sort.Interface implementation for Result // Len implements sort.Interface func (r *Result) Len() int { return len(r.Timestamps) } // Less implements sort.Interface func (r *Result) Less(i, j int) bool { timestamps := r.Timestamps return timestamps[i] < timestamps[j] } // Swap implements sort.Interface func (r *Result) Swap(i, j int) { timestamps := r.Timestamps values := r.Values timestamps[i], timestamps[j] = timestamps[j], timestamps[i] values[i], values[j] = values[j], values[i] } func getSortBlock() *sortBlock { v := sbPool.Get() if v == nil { return &sortBlock{} } return v.(*sortBlock) } func putSortBlock(sb *sortBlock) { sb.reset() sbPool.Put(sb) } var sbPool sync.Pool var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`) func mergeSortBlocks(dst *Result, sbh sortBlocksHeap, dedupInterval int64) { // Skip empty sort blocks, since they cannot be passed to heap.Init. src := sbh sbh = sbh[:0] for _, sb := range src { if len(sb.Timestamps) == 0 { putSortBlock(sb) continue } sbh = append(sbh, sb) } if len(sbh) == 0 { return } heap.Init(&sbh) for { top := sbh[0] heap.Pop(&sbh) if len(sbh) == 0 { dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...) dst.Values = append(dst.Values, top.Values[top.NextIdx:]...) putSortBlock(top) break } sbNext := sbh[0] tsNext := sbNext.Timestamps[sbNext.NextIdx] idxNext := len(top.Timestamps) if top.Timestamps[idxNext-1] > tsNext { idxNext = top.NextIdx for top.Timestamps[idxNext] <= tsNext { idxNext++ } } dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:idxNext]...) dst.Values = append(dst.Values, top.Values[top.NextIdx:idxNext]...) if idxNext < len(top.Timestamps) { top.NextIdx = idxNext heap.Push(&sbh, top) } else { // Return top to the pool. putSortBlock(top) } } timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values, dedupInterval) dedups := len(dst.Timestamps) - len(timestamps) dedupsDuringSelect.Add(dedups) dst.Timestamps = timestamps dst.Values = values } var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`) type sortBlock struct { Timestamps []int64 Values []float64 NextIdx int } func (sb *sortBlock) reset() { sb.Timestamps = sb.Timestamps[:0] sb.Values = sb.Values[:0] sb.NextIdx = 0 } func (sb *sortBlock) unpackFrom(tmpBlock *storage.Block, tbf *tmpBlocksFile, br blockRef, tr storage.TimeRange) error { tmpBlock.Reset() brReal := tbf.MustReadBlockRefAt(br.partRef, br.addr) brReal.MustReadBlock(tmpBlock) if err := tmpBlock.UnmarshalData(); err != nil { return fmt.Errorf("cannot unmarshal block: %w", err) } sb.Timestamps, sb.Values = tmpBlock.AppendRowsWithTimeRangeFilter(sb.Timestamps[:0], sb.Values[:0], tr) skippedRows := tmpBlock.RowsCount() - len(sb.Timestamps) metricRowsSkipped.Add(skippedRows) return nil } type sortBlocksHeap []*sortBlock func (sbh sortBlocksHeap) Len() int { return len(sbh) } func (sbh sortBlocksHeap) Less(i, j int) bool { a := sbh[i] b := sbh[j] return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx] } func (sbh sortBlocksHeap) Swap(i, j int) { sbh[i], sbh[j] = sbh[j], sbh[i] } func (sbh *sortBlocksHeap) Push(x interface{}) { *sbh = append(*sbh, x.(*sortBlock)) } func (sbh *sortBlocksHeap) Pop() interface{} { a := *sbh v := a[len(a)-1] *sbh = a[:len(a)-1] return v } // DeleteSeries deletes time series matching the given tagFilterss. func DeleteSeries(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (int, error) { qt = qt.NewChild("delete series: %s", sq) defer qt.Done() tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return 0, err } return vmstorage.DeleteMetrics(qt, tfss) } // LabelNames returns label names matching the given sq until the given deadline. func LabelNames(qt *querytracer.Tracer, sq *storage.SearchQuery, maxLabelNames int, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("get labels: %s", sq) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } if maxLabelNames > *maxTagKeysPerSearch || maxLabelNames <= 0 { maxLabelNames = *maxTagKeysPerSearch } tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return nil, err } labels, err := vmstorage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxLabelNames, sq.MaxMetrics, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("error during labels search on time range: %w", err) } // Merge labels obtained from Prometheus storage. promLabels, err := promdb.GetLabelNamesOnTimeRange(tr, deadline) if err != nil { return nil, fmt.Errorf("cannot obtain labels from Prometheus storage: %w", err) } qt.Printf("get %d label names from Prometheus storage", len(promLabels)) labels = mergeStrings(labels, promLabels) // Sort labels like Prometheus does sort.Strings(labels) qt.Printf("sort %d labels", len(labels)) return labels, nil } // GraphiteTags returns Graphite tags until the given deadline. func GraphiteTags(qt *querytracer.Tracer, filter string, limit int, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("get graphite tags: filter=%s, limit=%d", filter, limit) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } sq := storage.NewSearchQuery(0, 0, nil, 0) labels, err := LabelNames(qt, sq, 0, deadline) if err != nil { return nil, err } // Substitute "__name__" with "name" for Graphite compatibility for i := range labels { if labels[i] != "__name__" { continue } // Prevent from duplicate `name` tag. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/942 if hasString(labels, "name") { labels = append(labels[:i], labels[i+1:]...) } else { labels[i] = "name" sort.Strings(labels) } break } if len(filter) > 0 { labels, err = applyGraphiteRegexpFilter(filter, labels) if err != nil { return nil, err } } if limit > 0 && limit < len(labels) { labels = labels[:limit] } return labels, nil } func hasString(a []string, s string) bool { for _, x := range a { if x == s { return true } } return false } // LabelValues returns label values matching the given labelName and sq until the given deadline. func LabelValues(qt *querytracer.Tracer, labelName string, sq *storage.SearchQuery, maxLabelValues int, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("get values for label %s: %s", labelName, sq) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } if maxLabelValues > *maxTagValuesPerSearch || maxLabelValues <= 0 { maxLabelValues = *maxTagValuesPerSearch } tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return nil, err } labelValues, err := vmstorage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, sq.MaxMetrics, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("error during label values search on time range: %w", err) } // Merge label values obtained from Prometheus storage. promLabelValues, err := promdb.GetLabelValuesOnTimeRange(labelName, tr, deadline) if err != nil { return nil, fmt.Errorf("cannot obtain label values on time range for %q from Prometheus storage: %w", labelName, err) } qt.Printf("get %d label values from Prometheus storage", len(promLabelValues)) labelValues = mergeStrings(labelValues, promLabelValues) // Sort labelValues like Prometheus does sort.Strings(labelValues) qt.Printf("sort %d label values", len(labelValues)) return labelValues, nil } func mergeStrings(a, b []string) []string { if len(a) == 0 { return b } if len(b) == 0 { return a } m := make(map[string]struct{}, len(a)+len(b)) for _, s := range a { m[s] = struct{}{} } for _, s := range b { m[s] = struct{}{} } result := make([]string, 0, len(m)) for s := range m { result = append(result, s) } return result } // GraphiteTagValues returns tag values for the given tagName until the given deadline. func GraphiteTagValues(qt *querytracer.Tracer, tagName, filter string, limit int, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("get graphite tag values for tagName=%s, filter=%s, limit=%d", tagName, filter, limit) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } if tagName == "name" { tagName = "" } sq := storage.NewSearchQuery(0, 0, nil, 0) tagValues, err := LabelValues(qt, tagName, sq, 0, deadline) if err != nil { return nil, err } if len(filter) > 0 { tagValues, err = applyGraphiteRegexpFilter(filter, tagValues) if err != nil { return nil, err } } if limit > 0 && limit < len(tagValues) { tagValues = tagValues[:limit] } return tagValues, nil } // TagValueSuffixes returns tag value suffixes for the given tagKey and the given tagValuePrefix. // // It can be used for implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find func TagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("get tag value suffixes for tagKey=%s, tagValuePrefix=%s, timeRange=%s", tagKey, tagValuePrefix, &tr) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } suffixes, err := vmstorage.SearchTagValueSuffixes(qt, tr, []byte(tagKey), []byte(tagValuePrefix), delimiter, *maxTagValueSuffixesPerSearch, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("error during search for suffixes for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s: %w", tagKey, tagValuePrefix, delimiter, tr.String(), err) } if len(suffixes) >= *maxTagValueSuffixesPerSearch { return nil, fmt.Errorf("more than -search.maxTagValueSuffixesPerSearch=%d tag value suffixes found for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s; "+ "either narrow down the query or increase -search.maxTagValueSuffixesPerSearch command-line flag value", *maxTagValueSuffixesPerSearch, tagKey, tagValuePrefix, delimiter, tr.String()) } return suffixes, nil } // TSDBStatus returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats // // It accepts aribtrary filters on time series in sq. func TSDBStatus(qt *querytracer.Tracer, sq *storage.SearchQuery, focusLabel string, topN int, deadline searchutils.Deadline) (*storage.TSDBStatus, error) { qt = qt.NewChild("get tsdb stats: %s, focusLabel=%q, topN=%d", sq, focusLabel, topN) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return nil, err } date := uint64(tr.MinTimestamp) / (3600 * 24 * 1000) status, err := vmstorage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, sq.MaxMetrics, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("error during tsdb status request: %w", err) } return status, nil } // SeriesCount returns the number of unique series. func SeriesCount(qt *querytracer.Tracer, deadline searchutils.Deadline) (uint64, error) { qt = qt.NewChild("get series count") defer qt.Done() if deadline.Exceeded() { return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } n, err := vmstorage.GetSeriesCount(deadline.Deadline()) if err != nil { return 0, fmt.Errorf("error during series count request: %w", err) } return n, nil } func getStorageSearch() *storage.Search { v := ssPool.Get() if v == nil { return &storage.Search{} } return v.(*storage.Search) } func putStorageSearch(sr *storage.Search) { sr.MustClose() ssPool.Put(sr) } var ssPool sync.Pool // ExportBlocks searches for time series matching sq and calls f for each found block. // // f is called in parallel from multiple goroutines. // Data processing is immediately stopped if f returns non-nil error. // It is the responsibility of f to call b.UnmarshalData before reading timestamps and values from the block. // It is the responsibility of f to filter blocks according to the given tr. func ExportBlocks(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline, f func(mn *storage.MetricName, b *storage.Block, tr storage.TimeRange) error) error { qt = qt.NewChild("export blocks: %s", sq) defer qt.Done() if deadline.Exceeded() { return fmt.Errorf("timeout exceeded before starting data export: %s", deadline.String()) } tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } if err := vmstorage.CheckTimeRange(tr); err != nil { return err } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return err } vmstorage.WG.Add(1) defer vmstorage.WG.Done() sr := getStorageSearch() defer putStorageSearch(sr) startTime := time.Now() sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline()) indexSearchDuration.UpdateDuration(startTime) // Start workers that call f in parallel on available CPU cores. gomaxprocs := cgroup.AvailableCPUs() workCh := make(chan *exportWork, gomaxprocs*8) var ( errGlobal error errGlobalLock sync.Mutex mustStop uint32 ) var wg sync.WaitGroup wg.Add(gomaxprocs) for i := 0; i < gomaxprocs; i++ { go func() { defer wg.Done() for xw := range workCh { if err := f(&xw.mn, &xw.b, tr); err != nil { errGlobalLock.Lock() if errGlobal != nil { errGlobal = err atomic.StoreUint32(&mustStop, 1) } errGlobalLock.Unlock() } xw.reset() exportWorkPool.Put(xw) } }() } // Feed workers with work blocksRead := 0 samples := 0 for sr.NextMetricBlock() { blocksRead++ if deadline.Exceeded() { return fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String()) } if atomic.LoadUint32(&mustStop) != 0 { break } xw := exportWorkPool.Get().(*exportWork) if err := xw.mn.Unmarshal(sr.MetricBlockRef.MetricName); err != nil { return fmt.Errorf("cannot unmarshal metricName for block #%d: %w", blocksRead, err) } br := sr.MetricBlockRef.BlockRef br.MustReadBlock(&xw.b) samples += br.RowsCount() workCh <- xw } close(workCh) // Wait for workers to finish. wg.Wait() qt.Printf("export blocks=%d, samples=%d", blocksRead, samples) // Check errors. err = sr.Error() if err == nil { err = errGlobal } if err != nil { if errors.Is(err, storage.ErrDeadlineExceeded) { return fmt.Errorf("timeout exceeded during the query: %s", deadline.String()) } return fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err) } return nil } type exportWork struct { mn storage.MetricName b storage.Block } func (xw *exportWork) reset() { xw.mn.Reset() xw.b.Reset() } var exportWorkPool = &sync.Pool{ New: func() interface{} { return &exportWork{} }, } // SearchMetricNames returns all the metric names matching sq until the given deadline. // // The returned metric names must be unmarshaled via storage.MetricName.UnmarshalString(). func SearchMetricNames(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) ([]string, error) { qt = qt.NewChild("fetch metric names: %s", sq) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting to search metric names: %s", deadline.String()) } // Setup search. tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } if err := vmstorage.CheckTimeRange(tr); err != nil { return nil, err } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return nil, err } metricNames, err := vmstorage.SearchMetricNames(qt, tfss, tr, sq.MaxMetrics, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("cannot find metric names: %w", err) } sort.Strings(metricNames) qt.Printf("sort %d metric names", len(metricNames)) return metricNames, nil } // ProcessSearchQuery performs sq until the given deadline. // // Results.RunParallel or Results.Cancel must be called on the returned Results. func ProcessSearchQuery(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (*Results, error) { qt = qt.NewChild("fetch matching series: %s", sq) defer qt.Done() if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } // Setup search. tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } if err := vmstorage.CheckTimeRange(tr); err != nil { return nil, err } tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline) if err != nil { return nil, err } vmstorage.WG.Add(1) defer vmstorage.WG.Done() sr := getStorageSearch() startTime := time.Now() maxSeriesCount := sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline()) indexSearchDuration.UpdateDuration(startTime) m := make(map[string][]blockRef, maxSeriesCount) orderedMetricNames := make([]string, 0, maxSeriesCount) blocksRead := 0 samples := 0 tbf := getTmpBlocksFile() var buf []byte for sr.NextMetricBlock() { blocksRead++ if deadline.Exceeded() { putTmpBlocksFile(tbf) putStorageSearch(sr) return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String()) } br := sr.MetricBlockRef.BlockRef samples += br.RowsCount() if *maxSamplesPerQuery > 0 && samples > *maxSamplesPerQuery { putTmpBlocksFile(tbf) putStorageSearch(sr) return nil, fmt.Errorf("cannot select more than -search.maxSamplesPerQuery=%d samples; possible solutions: to increase the -search.maxSamplesPerQuery; to reduce time range for the query; to use more specific label filters in order to select lower number of series", *maxSamplesPerQuery) } buf = br.Marshal(buf[:0]) addr, err := tbf.WriteBlockRefData(buf) if err != nil { putTmpBlocksFile(tbf) putStorageSearch(sr) return nil, fmt.Errorf("cannot write %d bytes to temporary file: %w", len(buf), err) } metricName := sr.MetricBlockRef.MetricName brs := m[string(metricName)] brs = append(brs, blockRef{ partRef: br.PartRef(), addr: addr, }) if len(brs) > 1 { m[string(metricName)] = brs } else { // An optimization for big number of time series with long metricName values: // use only a single copy of metricName for both orderedMetricNames and m. orderedMetricNames = append(orderedMetricNames, string(metricName)) m[orderedMetricNames[len(orderedMetricNames)-1]] = brs } } if err := sr.Error(); err != nil { putTmpBlocksFile(tbf) putStorageSearch(sr) if errors.Is(err, storage.ErrDeadlineExceeded) { return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String()) } return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err) } if err := tbf.Finalize(); err != nil { putTmpBlocksFile(tbf) putStorageSearch(sr) return nil, fmt.Errorf("cannot finalize temporary file: %w", err) } qt.Printf("fetch unique series=%d, blocks=%d, samples=%d, bytes=%d", len(m), blocksRead, samples, tbf.Len()) // Fetch data from promdb. pm := make(map[string]*promData) err = promdb.VisitSeries(sq, deadline, func(metricName []byte, values []float64, timestamps []int64) { pd := pm[string(metricName)] if pd == nil { if _, ok := m[string(metricName)]; !ok { orderedMetricNames = append(orderedMetricNames, string(metricName)) } pd = &promData{} pm[string(metricName)] = pd } pd.values = append(pd.values, values...) pd.timestamps = append(pd.timestamps, timestamps...) }) if err != nil { putTmpBlocksFile(tbf) putStorageSearch(sr) return nil, fmt.Errorf("error when searching in Prometheus data: %w", err) } var rss Results rss.tr = tr rss.deadline = deadline pts := make([]packedTimeseries, len(orderedMetricNames)) for i, metricName := range orderedMetricNames { pts[i] = packedTimeseries{ metricName: metricName, brs: m[metricName], pd: pm[metricName], } } rss.packedTimeseries = pts rss.sr = sr rss.tbf = tbf return &rss, nil } var indexSearchDuration = metrics.NewHistogram(`vm_index_search_duration_seconds`) type blockRef struct { partRef storage.PartRef addr tmpBlockAddr } func setupTfss(qt *querytracer.Tracer, tr storage.TimeRange, tagFilterss [][]storage.TagFilter, maxMetrics int, deadline searchutils.Deadline) ([]*storage.TagFilters, error) { tfss := make([]*storage.TagFilters, 0, len(tagFilterss)) for _, tagFilters := range tagFilterss { tfs := storage.NewTagFilters() for i := range tagFilters { tf := &tagFilters[i] if string(tf.Key) == "__graphite__" { query := tf.Value paths, err := vmstorage.SearchGraphitePaths(qt, tr, query, maxMetrics, deadline.Deadline()) if err != nil { return nil, fmt.Errorf("error when searching for Graphite paths for query %q: %w", query, err) } if len(paths) >= maxMetrics { return nil, fmt.Errorf("more than %d time series match Graphite query %q; "+ "either narrow down the query or increase the corresponding -search.max* command-line flag value", maxMetrics, query) } tfs.AddGraphiteQuery(query, paths, tf.IsNegative) continue } if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil { return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err) } } tfss = append(tfss, tfs) } return tfss, nil } func applyGraphiteRegexpFilter(filter string, ss []string) ([]string, error) { // Anchor filter regexp to the beginning of the string as Graphite does. // See https://github.com/graphite-project/graphite-web/blob/3ad279df5cb90b211953e39161df416e54a84948/webapp/graphite/tags/localdatabase.py#L157 filter = "^(?:" + filter + ")" re, err := regexp.Compile(filter) if err != nil { return nil, fmt.Errorf("cannot parse regexp filter=%q: %w", filter, err) } dst := ss[:0] for _, s := range ss { if re.MatchString(s) { dst = append(dst, s) } } return dst, nil }