// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package expfmt import ( "bufio" "fmt" "io" "math" "mime" "net/http" dto "github.com/prometheus/client_model/go" "google.golang.org/protobuf/encoding/protodelim" "github.com/prometheus/common/model" ) // Decoder types decode an input stream into metric families. type Decoder interface { Decode(*dto.MetricFamily) error } // DecodeOptions contains options used by the Decoder and in sample extraction. type DecodeOptions struct { // Timestamp is added to each value from the stream that has no explicit timestamp set. Timestamp model.Time } // ResponseFormat extracts the correct format from a HTTP response header. // If no matching format can be found FormatUnknown is returned. func ResponseFormat(h http.Header) Format { ct := h.Get(hdrContentType) mediatype, params, err := mime.ParseMediaType(ct) if err != nil { return FmtUnknown } const textType = "text/plain" switch mediatype { case ProtoType: if p, ok := params["proto"]; ok && p != ProtoProtocol { return FmtUnknown } if e, ok := params["encoding"]; ok && e != "delimited" { return FmtUnknown } return FmtProtoDelim case textType: if v, ok := params["version"]; ok && v != TextVersion { return FmtUnknown } return FmtText } return FmtUnknown } // NewDecoder returns a new decoder based on the given input format. // If the input format does not imply otherwise, a text format decoder is returned. func NewDecoder(r io.Reader, format Format) Decoder { switch format { case FmtProtoDelim: return &protoDecoder{r: r} } return &textDecoder{r: r} } // protoDecoder implements the Decoder interface for protocol buffers. type protoDecoder struct { r io.Reader } // Decode implements the Decoder interface. func (d *protoDecoder) Decode(v *dto.MetricFamily) error { opts := protodelim.UnmarshalOptions{ MaxSize: -1, } if err := opts.UnmarshalFrom(bufio.NewReader(d.r), v); err != nil { return err } if !model.IsValidMetricName(model.LabelValue(v.GetName())) { return fmt.Errorf("invalid metric name %q", v.GetName()) } for _, m := range v.GetMetric() { if m == nil { continue } for _, l := range m.GetLabel() { if l == nil { continue } if !model.LabelValue(l.GetValue()).IsValid() { return fmt.Errorf("invalid label value %q", l.GetValue()) } if !model.LabelName(l.GetName()).IsValid() { return fmt.Errorf("invalid label name %q", l.GetName()) } } } return nil } // textDecoder implements the Decoder interface for the text protocol. type textDecoder struct { r io.Reader fams map[string]*dto.MetricFamily err error } // Decode implements the Decoder interface. func (d *textDecoder) Decode(v *dto.MetricFamily) error { if d.err == nil { // Read all metrics in one shot. var p TextParser d.fams, d.err = p.TextToMetricFamilies(d.r) // If we don't get an error, store io.EOF for the end. if d.err == nil { d.err = io.EOF } } // Pick off one MetricFamily per Decode until there's nothing left. for key, fam := range d.fams { v.Name = fam.Name v.Help = fam.Help v.Type = fam.Type v.Metric = fam.Metric delete(d.fams, key) return nil } return d.err } // SampleDecoder wraps a Decoder to extract samples from the metric families // decoded by the wrapped Decoder. type SampleDecoder struct { Dec Decoder Opts *DecodeOptions f dto.MetricFamily } // Decode calls the Decode method of the wrapped Decoder and then extracts the // samples from the decoded MetricFamily into the provided model.Vector. func (sd *SampleDecoder) Decode(s *model.Vector) error { err := sd.Dec.Decode(&sd.f) if err != nil { return err } *s, err = extractSamples(&sd.f, sd.Opts) return err } // ExtractSamples builds a slice of samples from the provided metric // families. If an error occurs during sample extraction, it continues to // extract from the remaining metric families. The returned error is the last // error that has occurred. func ExtractSamples(o *DecodeOptions, fams ...*dto.MetricFamily) (model.Vector, error) { var ( all model.Vector lastErr error ) for _, f := range fams { some, err := extractSamples(f, o) if err != nil { lastErr = err continue } all = append(all, some...) } return all, lastErr } func extractSamples(f *dto.MetricFamily, o *DecodeOptions) (model.Vector, error) { switch f.GetType() { case dto.MetricType_COUNTER: return extractCounter(o, f), nil case dto.MetricType_GAUGE: return extractGauge(o, f), nil case dto.MetricType_SUMMARY: return extractSummary(o, f), nil case dto.MetricType_UNTYPED: return extractUntyped(o, f), nil case dto.MetricType_HISTOGRAM: return extractHistogram(o, f), nil } return nil, fmt.Errorf("expfmt.extractSamples: unknown metric family type %v", f.GetType()) } func extractCounter(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Counter == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Counter.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractGauge(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Gauge == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Gauge.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractUntyped(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Untyped == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Untyped.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples } func extractSummary(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Summary == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } for _, q := range m.Summary.Quantile { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } // BUG(matt): Update other names to "quantile". lset[model.LabelName(model.QuantileLabel)] = model.LabelValue(fmt.Sprint(q.GetQuantile())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(q.GetValue()), Timestamp: timestamp, }) } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Summary.GetSampleSum()), Timestamp: timestamp, }) lset = make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Summary.GetSampleCount()), Timestamp: timestamp, }) } return samples } func extractHistogram(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Histogram == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } infSeen := false for _, q := range m.Histogram.Bucket { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue(fmt.Sprint(q.GetUpperBound())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") if math.IsInf(q.GetUpperBound(), +1) { infSeen = true } samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(q.GetCumulativeCount()), Timestamp: timestamp, }) } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Histogram.GetSampleSum()), Timestamp: timestamp, }) lset = make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") count := &model.Sample{ Metric: model.Metric(lset), Value: model.SampleValue(m.Histogram.GetSampleCount()), Timestamp: timestamp, } samples = append(samples, count) if !infSeen { // Append an infinity bucket sample. lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue("+Inf") lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") samples = append(samples, &model.Sample{ Metric: model.Metric(lset), Value: count.Value, Timestamp: timestamp, }) } } return samples }