package promscrape import ( "flag" "fmt" "math" "math/bits" "strconv" "strings" "sync" "time" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bloomfilter" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal" "github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding" "github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/leveledbytebufferpool" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/promauth" "github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal" "github.com/VictoriaMetrics/VictoriaMetrics/lib/promrelabel" parser "github.com/VictoriaMetrics/VictoriaMetrics/lib/protoparser/prometheus" "github.com/VictoriaMetrics/VictoriaMetrics/lib/proxy" "github.com/VictoriaMetrics/VictoriaMetrics/lib/timerpool" "github.com/VictoriaMetrics/metrics" xxhash "github.com/cespare/xxhash/v2" ) var ( suppressScrapeErrors = flag.Bool("promscrape.suppressScrapeErrors", false, "Whether to suppress scrape errors logging. "+ "The last error for each target is always available at '/targets' page even if scrape errors logging is suppressed") noStaleMarkers = flag.Bool("promscrape.noStaleMarkers", false, "Whether to disable sending Prometheus stale markers for metrics when scrape target disappears. This option may reduce memory usage if stale markers aren't needed for your setup. This option also disables populating the scrape_series_added metric. See https://prometheus.io/docs/concepts/jobs_instances/#automatically-generated-labels-and-time-series") seriesLimitPerTarget = flag.Int("promscrape.seriesLimitPerTarget", 0, "Optional limit on the number of unique time series a single scrape target can expose. See https://docs.victoriametrics.com/vmagent.html#cardinality-limiter for more info") minResponseSizeForStreamParse = flagutil.NewBytes("promscrape.minResponseSizeForStreamParse", 1e6, "The minimum target response size for automatic switching to stream parsing mode, which can reduce memory usage. See https://docs.victoriametrics.com/vmagent.html#stream-parsing-mode") ) // ScrapeWork represents a unit of work for scraping Prometheus metrics. // // It must be immutable during its lifetime, since it is read from concurrently running goroutines. type ScrapeWork struct { // Full URL (including query args) for the scrape. ScrapeURL string // Interval for scraping the ScrapeURL. ScrapeInterval time.Duration // Timeout for scraping the ScrapeURL. ScrapeTimeout time.Duration // How to deal with conflicting labels. // See https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config HonorLabels bool // How to deal with scraped timestamps. // See https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config HonorTimestamps bool // Whether to deny redirects during requests to scrape config. DenyRedirects bool // OriginalLabels contains original labels before relabeling. // // These labels are needed for relabeling troubleshooting at /targets page. OriginalLabels []prompbmarshal.Label // Labels to add to the scraped metrics. // // The list contains at least the following labels according to https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config // // * job // * __address__ // * __scheme__ // * __metrics_path__ // * __scrape_interval__ // * __scrape_timeout__ // * __param_ // * __meta_* // * user-defined labels set via `relabel_configs` section in `scrape_config` // // See also https://prometheus.io/docs/concepts/jobs_instances/ Labels []prompbmarshal.Label // ProxyURL HTTP proxy url ProxyURL *proxy.URL // Auth config for ProxyUR: ProxyAuthConfig *promauth.Config // Auth config AuthConfig *promauth.Config // Optional `metric_relabel_configs`. MetricRelabelConfigs *promrelabel.ParsedConfigs // The maximum number of metrics to scrape after relabeling. SampleLimit int // Whether to disable response compression when querying ScrapeURL. DisableCompression bool // Whether to disable HTTP keep-alive when querying ScrapeURL. DisableKeepAlive bool // Whether to parse target responses in a streaming manner. StreamParse bool // The interval for aligning the first scrape. ScrapeAlignInterval time.Duration // The offset for the first scrape. ScrapeOffset time.Duration // Optional limit on the number of unique series the scrape target can expose. SeriesLimit int // The original 'job_name' jobNameOriginal string } func (sw *ScrapeWork) canSwitchToStreamParseMode() bool { // Deny switching to stream parse mode if `sample_limit` or `series_limit` options are set, // since these limits cannot be applied in stream parsing mode. return sw.SampleLimit <= 0 && sw.SeriesLimit <= 0 } // key returns unique identifier for the given sw. // // It can be used for comparing for equality for two ScrapeWork objects. func (sw *ScrapeWork) key() string { // Do not take into account OriginalLabels, since they can be changed with relabeling. // Take into account JobNameOriginal in order to capture the case when the original job_name is changed via relabeling. key := fmt.Sprintf("JobNameOriginal=%s, ScrapeURL=%s, ScrapeInterval=%s, ScrapeTimeout=%s, HonorLabels=%v, HonorTimestamps=%v, DenyRedirects=%v, Labels=%s, "+ "ProxyURL=%s, ProxyAuthConfig=%s, AuthConfig=%s, MetricRelabelConfigs=%s, SampleLimit=%d, DisableCompression=%v, DisableKeepAlive=%v, StreamParse=%v, "+ "ScrapeAlignInterval=%s, ScrapeOffset=%s, SeriesLimit=%d", sw.jobNameOriginal, sw.ScrapeURL, sw.ScrapeInterval, sw.ScrapeTimeout, sw.HonorLabels, sw.HonorTimestamps, sw.DenyRedirects, sw.LabelsString(), sw.ProxyURL.String(), sw.ProxyAuthConfig.String(), sw.AuthConfig.String(), sw.MetricRelabelConfigs.String(), sw.SampleLimit, sw.DisableCompression, sw.DisableKeepAlive, sw.StreamParse, sw.ScrapeAlignInterval, sw.ScrapeOffset, sw.SeriesLimit) return key } // Job returns job for the ScrapeWork func (sw *ScrapeWork) Job() string { return promrelabel.GetLabelValueByName(sw.Labels, "job") } // LabelsString returns labels in Prometheus format for the given sw. func (sw *ScrapeWork) LabelsString() string { labelsFinalized := promrelabel.FinalizeLabels(nil, sw.Labels) return promLabelsString(labelsFinalized) } func promLabelsString(labels []prompbmarshal.Label) string { // Calculate the required memory for storing serialized labels. n := 2 // for `{...}` for _, label := range labels { n += len(label.Name) + len(label.Value) n += 4 // for `="...",` } b := make([]byte, 0, n) b = append(b, '{') for i, label := range labels { b = append(b, label.Name...) b = append(b, '=') b = strconv.AppendQuote(b, label.Value) if i+1 < len(labels) { b = append(b, ',') } } b = append(b, '}') return bytesutil.ToUnsafeString(b) } type scrapeWork struct { // Config for the scrape. Config *ScrapeWork // ReadData is called for reading the data. ReadData func(dst []byte) ([]byte, error) // GetStreamReader is called if Config.StreamParse is set. GetStreamReader func() (*streamReader, error) // PushData is called for pushing collected data. PushData func(wr *prompbmarshal.WriteRequest) // ScrapeGroup is name of ScrapeGroup that // scrapeWork belongs to ScrapeGroup string tmpRow parser.Row // This flag is set to true if series_limit is exceeded. seriesLimitExceeded bool // labelsHashBuf is used for calculating the hash on series labels labelsHashBuf []byte // Optional limiter on the number of unique series per scrape target. seriesLimiter *bloomfilter.Limiter // Optional counter on the number of dropped samples if the limit on the number of unique series is set. seriesLimiterRowsDroppedTotal *metrics.Counter // prevBodyLen contains the previous response body length for the given scrape work. // It is used as a hint in order to reduce memory usage for body buffers. prevBodyLen int // prevLabelsLen contains the number labels scraped during the previous scrape. // It is used as a hint in order to reduce memory usage when parsing scrape responses. prevLabelsLen int // lastScrape holds the last response from scrape target. // It is used for staleness tracking and for populating scrape_series_added metric. // The lastScrape isn't populated if -promscrape.noStaleMarkers is set. This reduces memory usage. lastScrape []byte // lastScrapeCompressed is used for storing the compressed lastScrape between scrapes // in stream parsing mode in order to reduce memory usage when the lastScrape size // equals to or exceeds -promscrape.minResponseSizeForStreamParse lastScrapeCompressed []byte } func (sw *scrapeWork) loadLastScrape() string { if len(sw.lastScrapeCompressed) > 0 { b, err := encoding.DecompressZSTD(sw.lastScrape[:0], sw.lastScrapeCompressed) if err != nil { logger.Panicf("BUG: cannot unpack compressed previous response: %s", err) } sw.lastScrape = b } return bytesutil.ToUnsafeString(sw.lastScrape) } func (sw *scrapeWork) storeLastScrape(lastScrape []byte) { mustCompress := minResponseSizeForStreamParse.N > 0 && len(lastScrape) >= minResponseSizeForStreamParse.N if mustCompress { sw.lastScrapeCompressed = encoding.CompressZSTDLevel(sw.lastScrapeCompressed[:0], lastScrape, 1) sw.lastScrape = nil } else { sw.lastScrape = append(sw.lastScrape[:0], lastScrape...) sw.lastScrapeCompressed = nil } } func (sw *scrapeWork) finalizeLastScrape() { if len(sw.lastScrapeCompressed) > 0 { // The compressed lastScrape is available in sw.lastScrapeCompressed. // Release the memory occupied by sw.lastScrape, so it won't be occupied between scrapes. sw.lastScrape = nil } if len(sw.lastScrape) > 0 { // Release the memory occupied by sw.lastScrapeCompressed, so it won't be occupied between scrapes. sw.lastScrapeCompressed = nil } } func (sw *scrapeWork) run(stopCh <-chan struct{}) { var randSleep uint64 scrapeInterval := sw.Config.ScrapeInterval scrapeAlignInterval := sw.Config.ScrapeAlignInterval scrapeOffset := sw.Config.ScrapeOffset if scrapeOffset > 0 { scrapeAlignInterval = scrapeInterval } if scrapeAlignInterval <= 0 { // Calculate start time for the first scrape from ScrapeURL and labels. // This should spread load when scraping many targets with different // scrape urls and labels. // This also makes consistent scrape times across restarts // for a target with the same ScrapeURL and labels. // // Include clusterMemberNum to the key in order to guarantee that each member in vmagent cluster // scrapes replicated targets at different time offsets. This guarantees that the deduplication consistently leaves samples // received from the same vmagent replica. // See https://docs.victoriametrics.com/vmagent.html#scraping-big-number-of-targets key := fmt.Sprintf("ClusterMemberNum=%d, ScrapeURL=%s, Labels=%s", *clusterMemberNum, sw.Config.ScrapeURL, sw.Config.LabelsString()) h := xxhash.Sum64(bytesutil.ToUnsafeBytes(key)) randSleep = uint64(float64(scrapeInterval) * (float64(h) / (1 << 64))) sleepOffset := uint64(time.Now().UnixNano()) % uint64(scrapeInterval) if randSleep < sleepOffset { randSleep += uint64(scrapeInterval) } randSleep -= sleepOffset } else { d := uint64(scrapeAlignInterval) randSleep = d - uint64(time.Now().UnixNano())%d if scrapeOffset > 0 { randSleep += uint64(scrapeOffset) } randSleep %= uint64(scrapeInterval) } timer := timerpool.Get(time.Duration(randSleep)) var timestamp int64 var ticker *time.Ticker select { case <-stopCh: timerpool.Put(timer) return case <-timer.C: timerpool.Put(timer) ticker = time.NewTicker(scrapeInterval) timestamp = time.Now().UnixNano() / 1e6 sw.scrapeAndLogError(timestamp, timestamp) } defer ticker.Stop() for { timestamp += scrapeInterval.Milliseconds() select { case <-stopCh: t := time.Now().UnixNano() / 1e6 lastScrape := sw.loadLastScrape() sw.sendStaleSeries(lastScrape, "", t, true) if sw.seriesLimiter != nil { job := sw.Config.Job() metrics.UnregisterMetric(fmt.Sprintf(`promscrape_series_limit_rows_dropped_total{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL)) metrics.UnregisterMetric(fmt.Sprintf(`promscrape_series_limit_max_series{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL)) metrics.UnregisterMetric(fmt.Sprintf(`promscrape_series_limit_current_series{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL)) sw.seriesLimiter.MustStop() } return case tt := <-ticker.C: t := tt.UnixNano() / 1e6 if d := math.Abs(float64(t - timestamp)); d > 0 && d/float64(scrapeInterval.Milliseconds()) > 0.1 { // Too big jitter. Adjust timestamp timestamp = t } sw.scrapeAndLogError(timestamp, t) } } } func (sw *scrapeWork) logError(s string) { if !*suppressScrapeErrors { logger.ErrorfSkipframes(1, "error when scraping %q from job %q with labels %s: %s; "+ "scrape errors can be disabled by -promscrape.suppressScrapeErrors command-line flag", sw.Config.ScrapeURL, sw.Config.Job(), sw.Config.LabelsString(), s) } } func (sw *scrapeWork) scrapeAndLogError(scrapeTimestamp, realTimestamp int64) { if err := sw.scrapeInternal(scrapeTimestamp, realTimestamp); err != nil && !*suppressScrapeErrors { logger.Errorf("error when scraping %q from job %q with labels %s: %s", sw.Config.ScrapeURL, sw.Config.Job(), sw.Config.LabelsString(), err) } } var ( scrapeDuration = metrics.NewHistogram("vm_promscrape_scrape_duration_seconds") scrapeResponseSize = metrics.NewHistogram("vm_promscrape_scrape_response_size_bytes") scrapedSamples = metrics.NewHistogram("vm_promscrape_scraped_samples") scrapesSkippedBySampleLimit = metrics.NewCounter("vm_promscrape_scrapes_skipped_by_sample_limit_total") scrapesFailed = metrics.NewCounter("vm_promscrape_scrapes_failed_total") pushDataDuration = metrics.NewHistogram("vm_promscrape_push_data_duration_seconds") ) func (sw *scrapeWork) mustSwitchToStreamParseMode(responseSize int) bool { if minResponseSizeForStreamParse.N <= 0 { return false } return sw.Config.canSwitchToStreamParseMode() && responseSize >= minResponseSizeForStreamParse.N } func (sw *scrapeWork) scrapeInternal(scrapeTimestamp, realTimestamp int64) error { if *streamParse || sw.Config.StreamParse || sw.mustSwitchToStreamParseMode(sw.prevBodyLen) { // Read data from scrape targets in streaming manner. // This case is optimized for targets exposing more than ten thousand of metrics per target. return sw.scrapeStream(scrapeTimestamp, realTimestamp) } // Common case: read all the data from scrape target to memory (body) and then process it. // This case should work more optimally than stream parse code for common case when scrape target exposes // up to a few thousand metrics. body := leveledbytebufferpool.Get(sw.prevBodyLen) var err error body.B, err = sw.ReadData(body.B[:0]) endTimestamp := time.Now().UnixNano() / 1e6 duration := float64(endTimestamp-realTimestamp) / 1e3 scrapeDuration.Update(duration) scrapeResponseSize.Update(float64(len(body.B))) up := 1 wc := writeRequestCtxPool.Get(sw.prevLabelsLen) lastScrape := sw.loadLastScrape() bodyString := bytesutil.ToUnsafeString(body.B) areIdenticalSeries := *noStaleMarkers || parser.AreIdenticalSeriesFast(lastScrape, bodyString) if err != nil { up = 0 scrapesFailed.Inc() } else { wc.rows.UnmarshalWithErrLogger(bodyString, sw.logError) } srcRows := wc.rows.Rows samplesScraped := len(srcRows) scrapedSamples.Update(float64(samplesScraped)) for i := range srcRows { sw.addRowToTimeseries(wc, &srcRows[i], scrapeTimestamp, true) } samplesPostRelabeling := len(wc.writeRequest.Timeseries) if sw.Config.SampleLimit > 0 && samplesPostRelabeling > sw.Config.SampleLimit { wc.resetNoRows() up = 0 scrapesSkippedBySampleLimit.Inc() err = fmt.Errorf("the response from %q exceeds sample_limit=%d; "+ "either reduce the sample count for the target or increase sample_limit", sw.Config.ScrapeURL, sw.Config.SampleLimit) } if up == 0 { bodyString = "" } seriesAdded := 0 if !areIdenticalSeries { // The returned value for seriesAdded may be bigger than the real number of added series // if some series were removed during relabeling. // This is a trade-off between performance and accuracy. seriesAdded = sw.getSeriesAdded(lastScrape, bodyString) } if sw.seriesLimitExceeded || !areIdenticalSeries { if sw.applySeriesLimit(wc) { sw.seriesLimitExceeded = true } } sw.addAutoTimeseries(wc, "up", float64(up), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_duration_seconds", duration, scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_samples_scraped", float64(samplesScraped), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_samples_post_metric_relabeling", float64(samplesPostRelabeling), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_series_added", float64(seriesAdded), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_timeout_seconds", sw.Config.ScrapeTimeout.Seconds(), scrapeTimestamp) sw.pushData(&wc.writeRequest) sw.prevLabelsLen = len(wc.labels) sw.prevBodyLen = len(bodyString) wc.reset() mustSwitchToStreamParse := sw.mustSwitchToStreamParseMode(len(bodyString)) if !mustSwitchToStreamParse { // Return wc to the pool if the parsed response size was smaller than -promscrape.minResponseSizeForStreamParse // This should reduce memory usage when scraping targets with big responses. writeRequestCtxPool.Put(wc) } // body must be released only after wc is released, since wc refers to body. if !areIdenticalSeries { sw.sendStaleSeries(lastScrape, bodyString, scrapeTimestamp, false) sw.storeLastScrape(body.B) } sw.finalizeLastScrape() if !mustSwitchToStreamParse { // Return wc to the pool only if its size is smaller than -promscrape.minResponseSizeForStreamParse // This should reduce memory usage when scraping targets which return big responses. leveledbytebufferpool.Put(body) } tsmGlobal.Update(sw.Config, sw.ScrapeGroup, up == 1, realTimestamp, int64(duration*1000), samplesScraped, err) return err } func (sw *scrapeWork) pushData(wr *prompbmarshal.WriteRequest) { startTime := time.Now() sw.PushData(wr) pushDataDuration.UpdateDuration(startTime) } type streamBodyReader struct { sr *streamReader body []byte bodyLen int captureBody bool } func (sbr *streamBodyReader) Read(b []byte) (int, error) { n, err := sbr.sr.Read(b) sbr.bodyLen += n if sbr.captureBody { sbr.body = append(sbr.body, b[:n]...) } return n, err } func (sw *scrapeWork) scrapeStream(scrapeTimestamp, realTimestamp int64) error { samplesScraped := 0 samplesPostRelabeling := 0 wc := writeRequestCtxPool.Get(sw.prevLabelsLen) // Do not pool sbr and do not pre-allocate sbr.body in order to reduce memory usage when scraping big responses. sbr := &streamBodyReader{ captureBody: !*noStaleMarkers, } sr, err := sw.GetStreamReader() if err != nil { err = fmt.Errorf("cannot read data: %s", err) } else { var mu sync.Mutex sbr.sr = sr err = parser.ParseStream(sbr, scrapeTimestamp, false, func(rows []parser.Row) error { mu.Lock() defer mu.Unlock() samplesScraped += len(rows) for i := range rows { sw.addRowToTimeseries(wc, &rows[i], scrapeTimestamp, true) } // Push the collected rows to sw before returning from the callback, since they cannot be held // after returning from the callback - this will result in data race. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/825#issuecomment-723198247 samplesPostRelabeling += len(wc.writeRequest.Timeseries) if sw.Config.SampleLimit > 0 && samplesPostRelabeling > sw.Config.SampleLimit { wc.resetNoRows() scrapesSkippedBySampleLimit.Inc() return fmt.Errorf("the response from %q exceeds sample_limit=%d; "+ "either reduce the sample count for the target or increase sample_limit", sw.Config.ScrapeURL, sw.Config.SampleLimit) } sw.pushData(&wc.writeRequest) wc.resetNoRows() return nil }, sw.logError) sr.MustClose() } lastScrape := sw.loadLastScrape() bodyString := bytesutil.ToUnsafeString(sbr.body) areIdenticalSeries := *noStaleMarkers || parser.AreIdenticalSeriesFast(lastScrape, bodyString) scrapedSamples.Update(float64(samplesScraped)) endTimestamp := time.Now().UnixNano() / 1e6 duration := float64(endTimestamp-realTimestamp) / 1e3 scrapeDuration.Update(duration) scrapeResponseSize.Update(float64(sbr.bodyLen)) up := 1 if err != nil { if samplesScraped == 0 { up = 0 } scrapesFailed.Inc() } seriesAdded := 0 if !areIdenticalSeries { // The returned value for seriesAdded may be bigger than the real number of added series // if some series were removed during relabeling. // This is a trade-off between performance and accuracy. seriesAdded = sw.getSeriesAdded(lastScrape, bodyString) } sw.addAutoTimeseries(wc, "up", float64(up), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_duration_seconds", duration, scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_samples_scraped", float64(samplesScraped), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_samples_post_metric_relabeling", float64(samplesPostRelabeling), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_series_added", float64(seriesAdded), scrapeTimestamp) sw.addAutoTimeseries(wc, "scrape_timeout_seconds", sw.Config.ScrapeTimeout.Seconds(), scrapeTimestamp) sw.pushData(&wc.writeRequest) sw.prevLabelsLen = len(wc.labels) sw.prevBodyLen = sbr.bodyLen wc.reset() writeRequestCtxPool.Put(wc) if !areIdenticalSeries { sw.sendStaleSeries(lastScrape, bodyString, scrapeTimestamp, false) sw.storeLastScrape(sbr.body) } sw.finalizeLastScrape() tsmGlobal.Update(sw.Config, sw.ScrapeGroup, up == 1, realTimestamp, int64(duration*1000), samplesScraped, err) // Do not track active series in streaming mode, since this may need too big amounts of memory // when the target exports too big number of metrics. return err } // leveledWriteRequestCtxPool allows reducing memory usage when writeRequesCtx // structs contain mixed number of labels. // // Its logic has been copied from leveledbytebufferpool. type leveledWriteRequestCtxPool struct { pools [13]sync.Pool } func (lwp *leveledWriteRequestCtxPool) Get(labelsCapacity int) *writeRequestCtx { id, capacityNeeded := lwp.getPoolIDAndCapacity(labelsCapacity) for i := 0; i < 2; i++ { if id < 0 || id >= len(lwp.pools) { break } if v := lwp.pools[id].Get(); v != nil { return v.(*writeRequestCtx) } id++ } return &writeRequestCtx{ labels: make([]prompbmarshal.Label, 0, capacityNeeded), } } func (lwp *leveledWriteRequestCtxPool) Put(wc *writeRequestCtx) { capacity := cap(wc.labels) id, poolCapacity := lwp.getPoolIDAndCapacity(capacity) if capacity <= poolCapacity { wc.reset() lwp.pools[id].Put(wc) } } func (lwp *leveledWriteRequestCtxPool) getPoolIDAndCapacity(size int) (int, int) { size-- if size < 0 { size = 0 } size >>= 3 id := bits.Len(uint(size)) if id >= len(lwp.pools) { id = len(lwp.pools) - 1 } return id, (1 << (id + 3)) } type writeRequestCtx struct { rows parser.Rows writeRequest prompbmarshal.WriteRequest labels []prompbmarshal.Label samples []prompbmarshal.Sample } func (wc *writeRequestCtx) reset() { wc.rows.Reset() wc.resetNoRows() } func (wc *writeRequestCtx) resetNoRows() { prompbmarshal.ResetWriteRequest(&wc.writeRequest) wc.labels = wc.labels[:0] wc.samples = wc.samples[:0] } var writeRequestCtxPool leveledWriteRequestCtxPool func (sw *scrapeWork) getSeriesAdded(lastScrape, currScrape string) int { if currScrape == "" { return 0 } bodyString := parser.GetRowsDiff(currScrape, lastScrape) return strings.Count(bodyString, "\n") } func (sw *scrapeWork) applySeriesLimit(wc *writeRequestCtx) bool { seriesLimit := *seriesLimitPerTarget if sw.Config.SeriesLimit > 0 { seriesLimit = sw.Config.SeriesLimit } if sw.seriesLimiter == nil && seriesLimit > 0 { job := sw.Config.Job() sw.seriesLimiter = bloomfilter.NewLimiter(seriesLimit, 24*time.Hour) sw.seriesLimiterRowsDroppedTotal = metrics.GetOrCreateCounter(fmt.Sprintf(`promscrape_series_limit_rows_dropped_total{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL)) _ = metrics.GetOrCreateGauge(fmt.Sprintf(`promscrape_series_limit_max_series{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL), func() float64 { return float64(sw.seriesLimiter.MaxItems()) }) _ = metrics.GetOrCreateGauge(fmt.Sprintf(`promscrape_series_limit_current_series{scrape_job_original=%q,scrape_job=%q,scrape_target=%q}`, sw.Config.jobNameOriginal, job, sw.Config.ScrapeURL), func() float64 { return float64(sw.seriesLimiter.CurrentItems()) }) } hsl := sw.seriesLimiter if hsl == nil { return false } dstSeries := wc.writeRequest.Timeseries[:0] limitExceeded := false for _, ts := range wc.writeRequest.Timeseries { h := sw.getLabelsHash(ts.Labels) if !hsl.Add(h) { // The limit on the number of hourly unique series per scrape target has been exceeded. // Drop the metric. sw.seriesLimiterRowsDroppedTotal.Inc() limitExceeded = true continue } dstSeries = append(dstSeries, ts) } wc.writeRequest.Timeseries = dstSeries return limitExceeded } func (sw *scrapeWork) sendStaleSeries(lastScrape, currScrape string, timestamp int64, addAutoSeries bool) { if *noStaleMarkers { return } bodyString := lastScrape if currScrape != "" { bodyString = parser.GetRowsDiff(lastScrape, currScrape) } wc := &writeRequestCtx{} if bodyString != "" { wc.rows.Unmarshal(bodyString) srcRows := wc.rows.Rows for i := range srcRows { sw.addRowToTimeseries(wc, &srcRows[i], timestamp, true) } } if addAutoSeries { sw.addAutoTimeseries(wc, "up", 0, timestamp) sw.addAutoTimeseries(wc, "scrape_duration_seconds", 0, timestamp) sw.addAutoTimeseries(wc, "scrape_samples_scraped", 0, timestamp) sw.addAutoTimeseries(wc, "scrape_samples_post_metric_relabeling", 0, timestamp) sw.addAutoTimeseries(wc, "scrape_series_added", 0, timestamp) } series := wc.writeRequest.Timeseries if len(series) == 0 { return } // Substitute all the values with Prometheus stale markers. for _, tss := range series { samples := tss.Samples for i := range samples { samples[i].Value = decimal.StaleNaN } } sw.pushData(&wc.writeRequest) } func (sw *scrapeWork) getLabelsHash(labels []prompbmarshal.Label) uint64 { // It is OK if there will be hash collisions for distinct sets of labels, // since the accuracy for `scrape_series_added` metric may be lower than 100%. b := sw.labelsHashBuf[:0] for _, label := range labels { b = append(b, label.Name...) b = append(b, label.Value...) } sw.labelsHashBuf = b return xxhash.Sum64(b) } // addAutoTimeseries adds automatically generated time series with the given name, value and timestamp. // // See https://prometheus.io/docs/concepts/jobs_instances/#automatically-generated-labels-and-time-series func (sw *scrapeWork) addAutoTimeseries(wc *writeRequestCtx, name string, value float64, timestamp int64) { sw.tmpRow.Metric = name sw.tmpRow.Tags = nil sw.tmpRow.Value = value sw.tmpRow.Timestamp = timestamp sw.addRowToTimeseries(wc, &sw.tmpRow, timestamp, false) } func (sw *scrapeWork) addRowToTimeseries(wc *writeRequestCtx, r *parser.Row, timestamp int64, needRelabel bool) { labelsLen := len(wc.labels) wc.labels = appendLabels(wc.labels, r.Metric, r.Tags, sw.Config.Labels, sw.Config.HonorLabels) if needRelabel { wc.labels = sw.Config.MetricRelabelConfigs.Apply(wc.labels, labelsLen, true) } else { wc.labels = promrelabel.FinalizeLabels(wc.labels[:labelsLen], wc.labels[labelsLen:]) promrelabel.SortLabels(wc.labels[labelsLen:]) } if len(wc.labels) == labelsLen { // Skip row without labels. return } sampleTimestamp := r.Timestamp if !sw.Config.HonorTimestamps || sampleTimestamp == 0 { sampleTimestamp = timestamp } wc.samples = append(wc.samples, prompbmarshal.Sample{ Value: r.Value, Timestamp: sampleTimestamp, }) wr := &wc.writeRequest wr.Timeseries = append(wr.Timeseries, prompbmarshal.TimeSeries{ Labels: wc.labels[labelsLen:], Samples: wc.samples[len(wc.samples)-1:], }) } func appendLabels(dst []prompbmarshal.Label, metric string, src []parser.Tag, extraLabels []prompbmarshal.Label, honorLabels bool) []prompbmarshal.Label { dstLen := len(dst) dst = append(dst, prompbmarshal.Label{ Name: "__name__", Value: metric, }) for i := range src { tag := &src[i] dst = append(dst, prompbmarshal.Label{ Name: tag.Key, Value: tag.Value, }) } dst = append(dst, extraLabels...) labels := dst[dstLen:] if len(labels) <= 1 { // Fast path - only a single label. return dst } // de-duplicate labels dstLabels := labels[:0] for i := range labels { label := &labels[i] prevLabel := promrelabel.GetLabelByName(dstLabels, label.Name) if prevLabel == nil { dstLabels = append(dstLabels, *label) continue } if honorLabels { // Skip the extra label with the same name. continue } // Rename the prevLabel to "exported_" + label.Name. // See https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config exportedName := "exported_" + label.Name if promrelabel.GetLabelByName(dstLabels, exportedName) != nil { // Override duplicate with the current label. *prevLabel = *label continue } prevLabel.Name = exportedName dstLabels = append(dstLabels, *label) } return dst[:dstLen+len(dstLabels)] }