--- title: Scheduler weight: 3 menu: docs: parent: "vmanomaly-components" weight: 3 aliases: - /anomaly-detection/components/scheduler.html --- Scheduler defines how often to run and make inferences, as well as what timerange to use to train the model. Is specified in `scheduler` section of a config for VictoriaMetrics Anomaly Detection. > **Note: Starting from [v1.11.0](../CHANGELOG.md#v1110) scheduler section in config supports multiple schedulers via aliasing.
Also, `vmanomaly` expects scheduler section to be named `schedulers`. Using old (flat) format with `scheduler` key is deprecated and will be removed in future versions.** ```yaml schedulers: scheduler_periodic_1m: # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support) infer_every: "1m" fit_every: "2m" fit_window: "3h" scheduler_periodic_5m: # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support) infer_every: "5m" fit_every: "10m" fit_window: "3h" ... ``` Old-style configs (< [1.11.0](../CHANGELOG.md#v1110)) ```yaml scheduler: # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support) infer_every: "1m" fit_every: "2m" fit_window: "3h" ... ``` will be **implicitly** converted to ```yaml schedulers: default_scheduler: # default scheduler alias added, for backward compatibility class: "scheduler.periodic.PeriodicScheduler" infer_every: "1m" fit_every: "2m" fit_window: "3h" ... ``` ## Parameters `class`: str, default=`"scheduler.periodic.PeriodicScheduler"`, options={`"scheduler.periodic.PeriodicScheduler"`, `"scheduler.oneoff.OneoffScheduler"`, `"scheduler.backtesting.BacktestingScheduler"`} - `"scheduler.periodic.PeriodicScheduler"`: periodically runs the models on new data. Useful for consecutive re-trainings to counter [data drift](https://www.datacamp.com/tutorial/understanding-data-drift-model-drift) and model degradation over time. - `"scheduler.oneoff.OneoffScheduler"`: runs the process once and exits. Useful for testing. - `"scheduler.backtesting.BacktestingScheduler"`: imitates consecutive backtesting runs of OneoffScheduler. Runs the process once and exits. Use to get more granular control over testing on historical data. > **Note**: starting from [v1.13.0](../CHANGELOG.md#v1130), class aliases are supported, so `"scheduler.periodic.PeriodicScheduler"` can be substituted to `"periodic"`, `"scheduler.oneoff.OneoffScheduler"` - to `"oneoff"`, `"scheduler.backtesting.BacktestingScheduler"` - to `"backtesting"` **Depending on selected class, different parameters should be used** ## Periodic scheduler ### Parameters For periodic scheduler parameters are defined as differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. Examples: `"50s"`, `"4m"`, `"3h"`, `"2d"`, `"1w"`.
Time granularity
s seconds
m minutes
h hours
d days
w weeks
Parameter Type Example Description
`fit_window` str `"14d"` What time range to use for training the models. Must be at least 1 second.
`infer_every` str `"1m"` How often a model will write its conclusions on newly added data. Must be at least 1 second.
`fit_every` str, Optional `"1h"` How often to completely retrain the models. If missing value of `infer_every` is used and retrain on every inference run.
### Periodic scheduler config example ```yaml schedulers: periodic_scheduler_alias: class: "periodic" # (or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support) fit_window: "14d" infer_every: "1m" fit_every: "1h" ``` This part of the config means that `vmanomaly` will calculate the time window of the previous 14 days and use it to train a model. Every hour model will be retrained again on 14 days’ data, which will include + 1 hour of new data. The time window is strictly the same 14 days and doesn't extend for the next retrains. Every minute `vmanomaly` will produce model inferences for newly added data points by using the model that is kept in memory at that time. ## Oneoff scheduler ### Parameters For Oneoff scheduler timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are: * Z (UTC) * ±HH:MM * ±HHMM * ±HH If a time zone is omitted, a timezone-naive datetime is used. ### Defining fitting timeframe
Format Parameter Type Example Description
ISO 8601 `fit_start_iso` str `"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"` Start datetime to use for training a model. ISO string or UNIX time in seconds.
UNIX time `fit_start_s` float 1648771200
ISO 8601 `fit_end_iso` str `"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"` End datetime to use for training a model. Must be greater than `fit_start_*` . ISO string or UNIX time in seconds.
UNIX time `fit_end_s` float 1649548800
### Defining inference timeframe
Format Parameter Type Example Description
ISO 8601 `infer_start_iso` str `"2022-04-11T00:00:00Z", "2022-04-11T00:00:00+01:00", "2022-04-11T00:00:00+0100", "2022-04-11T00:00:00+01"` Start datetime to use for a model inference. ISO string or UNIX time in seconds.
UNIX time `infer_start_s` float 1649635200
ISO 8601 `infer_end_iso` str `"2022-04-14T00:00:00Z", "2022-04-14T00:00:00+01:00", "2022-04-14T00:00:00+0100", "2022-04-14T00:00:00+01"` End datetime to use for a model inference. Must be greater than `infer_start_*` . ISO string or UNIX time in seconds.
UNIX time `infer_end_s` float 1649894400
### ISO format scheduler config example ```yaml schedulers: oneoff_scheduler_alias: class: "oneoff" # (or class: "scheduler.oneoff.OneoffScheduler" until v1.13.0 with class alias support) fit_start_iso: "2022-04-01T00:00:00Z" fit_end_iso: "2022-04-10T00:00:00Z" infer_start_iso: "2022-04-11T00:00:00Z" infer_end_iso: "2022-04-14T00:00:00Z" ``` ### UNIX time format scheduler config example ```yaml schedulers: oneoff_scheduler_alias: class: "oneoff" # (or class: "scheduler.oneoff.OneoffScheduler" until v1.13.0 with class alias support) fit_start_s: 1648771200 fit_end_s: 1649548800 infer_start_s: 1649635200 infer_end_s: 1649894400 ``` ## Backtesting scheduler ### Parameters As for [Oneoff scheduler](#oneoff-scheduler), timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are: * Z (UTC) * ±HH:MM * ±HHMM * ±HH If a time zone is omitted, a timezone-naive datetime is used. ### Parallelization
Parameter Type Example Description
`n_jobs` int `1` Allows *proportionally faster (yet more resource-intensive)* evaluations of a config on historical data. Default value is 1, that implies *sequential* execution. Introduced in [v1.13.0](../CHANGELOG.md#v1130)
### Defining overall timeframe This timeframe will be used for slicing on intervals `(fit_window, infer_window == fit_every)`, starting from the *latest available* time point, which is `to_*` and going back, until no full `fit_window + infer_window` interval exists within the provided timeframe.
Format Parameter Type Example Description
ISO 8601 `from_iso` str `"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"` Start datetime to use for backtesting.
UNIX time `from_s` float 1648771200
ISO 8601 `to_iso` str `"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"` End datetime to use for backtesting. Must be greater than `from_start_*`
UNIX time `to_s` float 1649548800
### Defining training timeframe The same *explicit* logic as in [Periodic scheduler](#periodic-scheduler)
Format Parameter Type Example Description
ISO 8601 `fit_window` str `"PT1M", "P1H"` What time range to use for training the models. Must be at least 1 second.
Prometheus-compatible `"1m", "1h"`
### Defining inference timeframe In `BacktestingScheduler`, the inference window is *implicitly* defined as a period between 2 consecutive model `fit_every` runs. The *latest* inference window starts from `to_s` - `fit_every` and ends on the *latest available* time point, which is `to_s`. The previous periods for fit/infer are defined the same way, by shifting `fit_every` seconds backwards until we get the last full fit period of `fit_window` size, which start is >= `from_s`.
Format Parameter Type Example Description
ISO 8601 `fit_every` str `"PT1M", "P1H"` What time range to use previously trained model to infer on new data until next retrain happens.
Prometheus-compatible `"1m", "1h"`
### ISO format scheduler config example ```yaml schedulers: backtesting_scheduler_alias: class: "backtesting" # (or class: "scheduler.backtesting.BacktestingScheduler" until v1.13.0 with class alias support) from_iso: '2021-01-01T00:00:00Z' to_iso: '2021-01-14T00:00:00Z' fit_window: 'P14D' fit_every: 'PT1H' n_jobs: 1 # default = 1 (sequential), set it up to # of CPUs for parallel execution ``` ### UNIX time format scheduler config example ```yaml schedulers: backtesting_scheduler_alias: class: "backtesting" # (or class: "scheduler.backtesting.BacktestingScheduler" until v1.13.0 with class alias support) from_s: 167253120 to_s: 167443200 fit_window: '14d' fit_every: '1h' n_jobs: 1 # default = 1 (sequential), set it up to # of CPUs for parallel execution ```