// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import ( "bytes" "errors" "io" "sync" ) // Decoder provides decoding of zstandard streams. // The decoder has been designed to operate without allocations after a warmup. // This means that you should store the decoder for best performance. // To re-use a stream decoder, use the Reset(r io.Reader) error to switch to another stream. // A decoder can safely be re-used even if the previous stream failed. // To release the resources, you must call the Close() function on a decoder. type Decoder struct { o decoderOptions // Unreferenced decoders, ready for use. decoders chan *blockDec // Unreferenced decoders, ready for use. frames chan *frameDec // Streams ready to be decoded. stream chan decodeStream // Current read position used for Reader functionality. current decoderState // Custom dictionaries dicts map[uint32]struct{} // streamWg is the waitgroup for all streams streamWg sync.WaitGroup } // decoderState is used for maintaining state when the decoder // is used for streaming. type decoderState struct { // current block being written to stream. decodeOutput // output in order to be written to stream. output chan decodeOutput // cancel remaining output. cancel chan struct{} flushed bool } var ( // Check the interfaces we want to support. _ = io.WriterTo(&Decoder{}) _ = io.Reader(&Decoder{}) ) // NewReader creates a new decoder. // A nil Reader can be provided in which case Reset can be used to start a decode. // // A Decoder can be used in two modes: // // 1) As a stream, or // 2) For stateless decoding using DecodeAll or DecodeBuffer. // // Only a single stream can be decoded concurrently, but the same decoder // can run multiple concurrent stateless decodes. It is even possible to // use stateless decodes while a stream is being decoded. // // The Reset function can be used to initiate a new stream, which is will considerably // reduce the allocations normally caused by NewReader. func NewReader(r io.Reader, opts ...DOption) (*Decoder, error) { var d Decoder d.o.setDefault() for _, o := range opts { err := o(&d.o) if err != nil { return nil, err } } d.current.output = make(chan decodeOutput, d.o.concurrent) d.current.flushed = true // Create decoders d.decoders = make(chan *blockDec, d.o.concurrent) d.frames = make(chan *frameDec, d.o.concurrent) for i := 0; i < d.o.concurrent; i++ { d.frames <- newFrameDec(d.o) d.decoders <- newBlockDec(d.o.lowMem) } if r == nil { return &d, nil } return &d, d.Reset(r) } // Read bytes from the decompressed stream into p. // Returns the number of bytes written and any error that occurred. // When the stream is done, io.EOF will be returned. func (d *Decoder) Read(p []byte) (int, error) { if d.stream == nil { return 0, errors.New("no input has been initialized") } var n int for { if len(d.current.b) > 0 { filled := copy(p, d.current.b) p = p[filled:] d.current.b = d.current.b[filled:] n += filled } if len(p) == 0 { break } if len(d.current.b) == 0 { // We have an error and no more data if d.current.err != nil { break } d.nextBlock() } } if len(d.current.b) > 0 { if debug { println("returning", n, "still bytes left:", len(d.current.b)) } // Only return error at end of block return n, nil } if d.current.err != nil { d.drainOutput() } if debug { println("returning", n, d.current.err, len(d.decoders)) } return n, d.current.err } // Reset will reset the decoder the supplied stream after the current has finished processing. // Note that this functionality cannot be used after Close has been called. func (d *Decoder) Reset(r io.Reader) error { if d.current.err == ErrDecoderClosed { return d.current.err } if r == nil { return errors.New("nil Reader sent as input") } if d.stream == nil { d.stream = make(chan decodeStream, 1) d.streamWg.Add(1) go d.startStreamDecoder(d.stream) } d.drainOutput() // If bytes buffer and < 1MB, do sync decoding anyway. if bb, ok := r.(*bytes.Buffer); ok && bb.Len() < 1<<20 { if debug { println("*bytes.Buffer detected, doing sync decode, len:", bb.Len()) } b := bb.Bytes() dst, err := d.DecodeAll(b, nil) if err == nil { err = io.EOF } d.current.b = dst d.current.err = err d.current.flushed = true if debug { println("sync decode to ", len(dst), "bytes, err:", err) } return nil } // Remove current block. d.current.decodeOutput = decodeOutput{} d.current.err = nil d.current.cancel = make(chan struct{}) d.current.flushed = false d.current.d = nil d.stream <- decodeStream{ r: r, output: d.current.output, cancel: d.current.cancel, } return nil } // drainOutput will drain the output until errEndOfStream is sent. func (d *Decoder) drainOutput() { if d.current.cancel != nil { println("cancelling current") close(d.current.cancel) d.current.cancel = nil } if d.current.d != nil { if debug { printf("re-adding current decoder %p, decoders: %d", d.current.d, len(d.decoders)) } d.decoders <- d.current.d d.current.d = nil d.current.b = nil } if d.current.output == nil || d.current.flushed { println("current already flushed") return } for { select { case v := <-d.current.output: if v.d != nil { if debug { printf("re-adding decoder %p", v.d) } d.decoders <- v.d } if v.err == errEndOfStream { println("current flushed") d.current.flushed = true return } } } } // WriteTo writes data to w until there's no more data to write or when an error occurs. // The return value n is the number of bytes written. // Any error encountered during the write is also returned. func (d *Decoder) WriteTo(w io.Writer) (int64, error) { if d.stream == nil { return 0, errors.New("no input has been initialized") } var n int64 for { if len(d.current.b) > 0 { n2, err2 := w.Write(d.current.b) n += int64(n2) if err2 != nil && d.current.err == nil { d.current.err = err2 break } } if d.current.err != nil { break } d.nextBlock() } err := d.current.err if err != nil { d.drainOutput() } if err == io.EOF { err = nil } return n, err } // DecodeAll allows stateless decoding of a blob of bytes. // Output will be appended to dst, so if the destination size is known // you can pre-allocate the destination slice to avoid allocations. // DecodeAll can be used concurrently. // The Decoder concurrency limits will be respected. func (d *Decoder) DecodeAll(input, dst []byte) ([]byte, error) { if d.current.err == ErrDecoderClosed { return dst, ErrDecoderClosed } // Grab a block decoder and frame decoder. block, frame := <-d.decoders, <-d.frames defer func() { if debug { printf("re-adding decoder: %p", block) } d.decoders <- block frame.rawInput = nil d.frames <- frame }() if cap(dst) == 0 { // Allocate 1MB by default if nothing is provided. dst = make([]byte, 0, 1<<20) } // Allocation here: br := byteBuf(input) for { err := frame.reset(&br) if err == io.EOF { return dst, nil } if err != nil { return dst, err } if frame.FrameContentSize > d.o.maxDecodedSize-uint64(len(dst)) { return dst, ErrDecoderSizeExceeded } if frame.FrameContentSize > 0 && frame.FrameContentSize < 1<<30 { // Never preallocate moe than 1 GB up front. if uint64(cap(dst)) < frame.FrameContentSize { dst2 := make([]byte, len(dst), len(dst)+int(frame.FrameContentSize)) copy(dst2, dst) dst = dst2 } } dst, err = frame.runDecoder(dst, block) if err != nil { return dst, err } if len(br) == 0 { break } } return dst, nil } // nextBlock returns the next block. // If an error occurs d.err will be set. func (d *Decoder) nextBlock() { if d.current.d != nil { if debug { printf("re-adding current decoder %p", d.current.d) } d.decoders <- d.current.d d.current.d = nil } if d.current.err != nil { // Keep error state. return } d.current.decodeOutput = <-d.current.output if debug { println("got", len(d.current.b), "bytes, error:", d.current.err) } } // Close will release all resources. // It is NOT possible to reuse the decoder after this. func (d *Decoder) Close() { if d.current.err == ErrDecoderClosed { return } d.drainOutput() if d.stream != nil { close(d.stream) d.streamWg.Wait() d.stream = nil } if d.decoders != nil { close(d.decoders) for dec := range d.decoders { dec.Close() } d.decoders = nil } if d.current.d != nil { d.current.d.Close() d.current.d = nil } d.current.err = ErrDecoderClosed } type decodeOutput struct { d *blockDec b []byte err error } type decodeStream struct { r io.Reader // Blocks ready to be written to output. output chan decodeOutput // cancel reading from the input cancel chan struct{} } // errEndOfStream indicates that everything from the stream was read. var errEndOfStream = errors.New("end-of-stream") // Create Decoder: // Spawn n block decoders. These accept tasks to decode a block. // Create goroutine that handles stream processing, this will send history to decoders as they are available. // Decoders update the history as they decode. // When a block is returned: // a) history is sent to the next decoder, // b) content written to CRC. // c) return data to WRITER. // d) wait for next block to return data. // Once WRITTEN, the decoders reused by the writer frame decoder for re-use. func (d *Decoder) startStreamDecoder(inStream chan decodeStream) { defer d.streamWg.Done() frame := newFrameDec(d.o) for stream := range inStream { if debug { println("got new stream") } br := readerWrapper{r: stream.r} decodeStream: for { err := frame.reset(&br) if debug && err != nil { println("Frame decoder returned", err) } if err != nil { stream.output <- decodeOutput{ err: err, } break } if debug { println("starting frame decoder") } // This goroutine will forward history between frames. frame.frameDone.Add(1) frame.initAsync() go frame.startDecoder(stream.output) decodeFrame: // Go through all blocks of the frame. for { dec := <-d.decoders select { case <-stream.cancel: if !frame.sendErr(dec, io.EOF) { // To not let the decoder dangle, send it back. stream.output <- decodeOutput{d: dec} } break decodeStream default: } err := frame.next(dec) switch err { case io.EOF: // End of current frame, no error println("EOF on next block") break decodeFrame case nil: continue default: println("block decoder returned", err) break decodeStream } } // All blocks have started decoding, check if there are more frames. println("waiting for done") frame.frameDone.Wait() println("done waiting...") } frame.frameDone.Wait() println("Sending EOS") stream.output <- decodeOutput{err: errEndOfStream} } }