package netstorage import ( "container/heap" "errors" "flag" "fmt" "runtime" "sort" "sync" "time" "github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/storage" "github.com/VictoriaMetrics/metrics" ) var ( maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned per search") maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned per search") maxMetricsPerSearch = flag.Int("search.maxUniqueTimeseries", 300e3, "The maximum number of unique time series each search can scan") ) // Result is a single timeseries result. // // ProcessSearchQuery returns Result slice. type Result struct { // The name of the metric. MetricName storage.MetricName // Values are sorted by Timestamps. Values []float64 Timestamps []int64 // Marshaled MetricName. Used only for results sorting // in app/vmselect/promql MetricNameMarshaled []byte } func (r *Result) reset() { r.MetricName.Reset() r.Values = r.Values[:0] r.Timestamps = r.Timestamps[:0] r.MetricNameMarshaled = r.MetricNameMarshaled[:0] } // Results holds results returned from ProcessSearchQuery. type Results struct { tr storage.TimeRange fetchData bool deadline Deadline packedTimeseries []packedTimeseries sr *storage.Search } // Len returns the number of results in rss. func (rss *Results) Len() int { return len(rss.packedTimeseries) } // Cancel cancels rss work. func (rss *Results) Cancel() { rss.mustClose() } func (rss *Results) mustClose() { putStorageSearch(rss.sr) rss.sr = nil } var timeseriesWorkCh = make(chan *timeseriesWork, gomaxprocs*16) type timeseriesWork struct { rss *Results pts *packedTimeseries f func(rs *Result, workerID uint) doneCh chan error rowsProcessed int } func init() { for i := 0; i < gomaxprocs; i++ { go timeseriesWorker(uint(i)) } } func timeseriesWorker(workerID uint) { var rs Result var rsLastResetTime uint64 for tsw := range timeseriesWorkCh { rss := tsw.rss if rss.deadline.Exceeded() { tsw.doneCh <- fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String()) continue } if err := tsw.pts.Unpack(&rs, rss.tr, rss.fetchData); err != nil { tsw.doneCh <- fmt.Errorf("error during time series unpacking: %w", err) continue } if len(rs.Timestamps) > 0 || !rss.fetchData { tsw.f(&rs, workerID) } tsw.rowsProcessed = len(rs.Values) tsw.doneCh <- nil currentTime := fasttime.UnixTimestamp() if cap(rs.Values) > 1024*1024 && 4*len(rs.Values) < cap(rs.Values) && currentTime-rsLastResetTime > 10 { // Reset rs in order to preseve memory usage after processing big time series with millions of rows. rs = Result{} rsLastResetTime = currentTime } } } // RunParallel runs f in parallel for all the results from rss. // // f shouldn't hold references to rs after returning. // workerID is the id of the worker goroutine that calls f. // // rss becomes unusable after the call to RunParallel. func (rss *Results) RunParallel(f func(rs *Result, workerID uint)) error { defer rss.mustClose() // Feed workers with work. tsws := make([]*timeseriesWork, len(rss.packedTimeseries)) for i := range rss.packedTimeseries { tsw := ×eriesWork{ rss: rss, pts: &rss.packedTimeseries[i], f: f, doneCh: make(chan error, 1), } timeseriesWorkCh <- tsw tsws[i] = tsw } seriesProcessedTotal := len(rss.packedTimeseries) rss.packedTimeseries = rss.packedTimeseries[:0] // Wait until work is complete. var firstErr error rowsProcessedTotal := 0 for _, tsw := range tsws { if err := <-tsw.doneCh; err != nil && firstErr == nil { // Return just the first error, since other errors // are likely duplicate the first error. firstErr = err } rowsProcessedTotal += tsw.rowsProcessed } perQueryRowsProcessed.Update(float64(rowsProcessedTotal)) perQuerySeriesProcessed.Update(float64(seriesProcessedTotal)) return firstErr } var perQueryRowsProcessed = metrics.NewHistogram(`vm_per_query_rows_processed_count`) var perQuerySeriesProcessed = metrics.NewHistogram(`vm_per_query_series_processed_count`) var gomaxprocs = runtime.GOMAXPROCS(-1) type packedTimeseries struct { metricName string brs []storage.BlockRef } var unpackWorkCh = make(chan *unpackWork, gomaxprocs*128) type unpackWorkItem struct { br storage.BlockRef tr storage.TimeRange } type unpackWork struct { ws []unpackWorkItem fetchData bool sbs []*sortBlock doneCh chan error } func (upw *unpackWork) reset() { ws := upw.ws for i := range ws { w := &ws[i] w.br = storage.BlockRef{} w.tr = storage.TimeRange{} } upw.ws = upw.ws[:0] upw.fetchData = false sbs := upw.sbs for i := range sbs { sbs[i] = nil } upw.sbs = upw.sbs[:0] if n := len(upw.doneCh); n > 0 { logger.Panicf("BUG: upw.doneCh must be empty; it contains %d items now", n) } } func (upw *unpackWork) unpack() { for _, w := range upw.ws { sb := getSortBlock() if err := sb.unpackFrom(w.br, w.tr, upw.fetchData); err != nil { putSortBlock(sb) upw.doneCh <- fmt.Errorf("cannot unpack block: %w", err) return } upw.sbs = append(upw.sbs, sb) } upw.doneCh <- nil } func getUnpackWork() *unpackWork { v := unpackWorkPool.Get() if v != nil { return v.(*unpackWork) } return &unpackWork{ doneCh: make(chan error, 1), } } func putUnpackWork(upw *unpackWork) { upw.reset() unpackWorkPool.Put(upw) } var unpackWorkPool sync.Pool func init() { for i := 0; i < gomaxprocs; i++ { go unpackWorker() } } func unpackWorker() { for upw := range unpackWorkCh { upw.unpack() } } // unpackBatchSize is the maximum number of blocks that may be unpacked at once by a single goroutine. // // This batch is needed in order to reduce contention for upackWorkCh in multi-CPU system. const unpackBatchSize = 16 // Unpack unpacks pts to dst. func (pts *packedTimeseries) Unpack(dst *Result, tr storage.TimeRange, fetchData bool) error { dst.reset() if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil { return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err) } // Feed workers with work upws := make([]*unpackWork, 0, 1+len(pts.brs)/unpackBatchSize) upw := getUnpackWork() upw.fetchData = fetchData for _, br := range pts.brs { if len(upw.ws) >= unpackBatchSize { unpackWorkCh <- upw upws = append(upws, upw) upw = getUnpackWork() upw.fetchData = fetchData } upw.ws = append(upw.ws, unpackWorkItem{ br: br, tr: tr, }) } unpackWorkCh <- upw upws = append(upws, upw) pts.brs = pts.brs[:0] // Wait until work is complete sbs := make([]*sortBlock, 0, len(pts.brs)) var firstErr error for _, upw := range upws { if err := <-upw.doneCh; err != nil && firstErr == nil { // Return the first error only, since other errors are likely the same. firstErr = err } if firstErr == nil { sbs = append(sbs, upw.sbs...) } else { for _, sb := range upw.sbs { putSortBlock(sb) } } putUnpackWork(upw) } if firstErr != nil { return firstErr } mergeSortBlocks(dst, sbs) return nil } func getSortBlock() *sortBlock { v := sbPool.Get() if v == nil { return &sortBlock{} } return v.(*sortBlock) } func putSortBlock(sb *sortBlock) { sb.reset() sbPool.Put(sb) } var sbPool sync.Pool var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`) func mergeSortBlocks(dst *Result, sbh sortBlocksHeap) { // Skip empty sort blocks, since they cannot be passed to heap.Init. src := sbh sbh = sbh[:0] for _, sb := range src { if len(sb.Timestamps) == 0 { putSortBlock(sb) continue } sbh = append(sbh, sb) } if len(sbh) == 0 { return } heap.Init(&sbh) for { top := sbh[0] heap.Pop(&sbh) if len(sbh) == 0 { dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...) dst.Values = append(dst.Values, top.Values[top.NextIdx:]...) putSortBlock(top) break } sbNext := sbh[0] tsNext := sbNext.Timestamps[sbNext.NextIdx] idxNext := len(top.Timestamps) if top.Timestamps[idxNext-1] > tsNext { idxNext = top.NextIdx for top.Timestamps[idxNext] <= tsNext { idxNext++ } } dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:idxNext]...) dst.Values = append(dst.Values, top.Values[top.NextIdx:idxNext]...) if idxNext < len(top.Timestamps) { top.NextIdx = idxNext heap.Push(&sbh, top) } else { // Return top to the pool. putSortBlock(top) } } timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values) dedups := len(dst.Timestamps) - len(timestamps) dedupsDuringSelect.Add(dedups) dst.Timestamps = timestamps dst.Values = values } var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`) type sortBlock struct { // b is used as a temporary storage for unpacked rows before they // go to Timestamps and Values. b storage.Block Timestamps []int64 Values []float64 NextIdx int } func (sb *sortBlock) reset() { sb.b.Reset() sb.Timestamps = sb.Timestamps[:0] sb.Values = sb.Values[:0] sb.NextIdx = 0 } func (sb *sortBlock) unpackFrom(br storage.BlockRef, tr storage.TimeRange, fetchData bool) error { br.MustReadBlock(&sb.b, fetchData) if fetchData { if err := sb.b.UnmarshalData(); err != nil { return fmt.Errorf("cannot unmarshal block: %w", err) } } timestamps := sb.b.Timestamps() // Skip timestamps smaller than tr.MinTimestamp. i := 0 for i < len(timestamps) && timestamps[i] < tr.MinTimestamp { i++ } // Skip timestamps bigger than tr.MaxTimestamp. j := len(timestamps) for j > i && timestamps[j-1] > tr.MaxTimestamp { j-- } skippedRows := sb.b.RowsCount() - (j - i) metricRowsSkipped.Add(skippedRows) // Copy the remaining values. if i == j { return nil } values := sb.b.Values() sb.Timestamps = append(sb.Timestamps, timestamps[i:j]...) sb.Values = decimal.AppendDecimalToFloat(sb.Values, values[i:j], sb.b.Scale()) return nil } type sortBlocksHeap []*sortBlock func (sbh sortBlocksHeap) Len() int { return len(sbh) } func (sbh sortBlocksHeap) Less(i, j int) bool { a := sbh[i] b := sbh[j] return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx] } func (sbh sortBlocksHeap) Swap(i, j int) { sbh[i], sbh[j] = sbh[j], sbh[i] } func (sbh *sortBlocksHeap) Push(x interface{}) { *sbh = append(*sbh, x.(*sortBlock)) } func (sbh *sortBlocksHeap) Pop() interface{} { a := *sbh v := a[len(a)-1] *sbh = a[:len(a)-1] return v } // DeleteSeries deletes time series matching the given tagFilterss. func DeleteSeries(sq *storage.SearchQuery) (int, error) { tfss, err := setupTfss(sq.TagFilterss) if err != nil { return 0, err } return vmstorage.DeleteMetrics(tfss) } // GetLabels returns labels until the given deadline. func GetLabels(deadline Deadline) ([]string, error) { if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } labels, err := vmstorage.SearchTagKeys(*maxTagKeysPerSearch, deadline.deadline) if err != nil { return nil, fmt.Errorf("error during labels search: %w", err) } // Substitute "" with "__name__" for i := range labels { if labels[i] == "" { labels[i] = "__name__" } } // Sort labels like Prometheus does sort.Strings(labels) return labels, nil } // GetLabelValues returns label values for the given labelName // until the given deadline. func GetLabelValues(labelName string, deadline Deadline) ([]string, error) { if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } if labelName == "__name__" { labelName = "" } // Search for tag values labelValues, err := vmstorage.SearchTagValues([]byte(labelName), *maxTagValuesPerSearch, deadline.deadline) if err != nil { return nil, fmt.Errorf("error during label values search for labelName=%q: %w", labelName, err) } // Sort labelValues like Prometheus does sort.Strings(labelValues) return labelValues, nil } // GetLabelEntries returns all the label entries until the given deadline. func GetLabelEntries(deadline Deadline) ([]storage.TagEntry, error) { if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } labelEntries, err := vmstorage.SearchTagEntries(*maxTagKeysPerSearch, *maxTagValuesPerSearch, deadline.deadline) if err != nil { return nil, fmt.Errorf("error during label entries request: %w", err) } // Substitute "" with "__name__" for i := range labelEntries { e := &labelEntries[i] if e.Key == "" { e.Key = "__name__" } } // Sort labelEntries by the number of label values in each entry. sort.Slice(labelEntries, func(i, j int) bool { a, b := labelEntries[i].Values, labelEntries[j].Values if len(a) != len(b) { return len(a) > len(b) } return labelEntries[i].Key > labelEntries[j].Key }) return labelEntries, nil } // GetTSDBStatusForDate returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats func GetTSDBStatusForDate(deadline Deadline, date uint64, topN int) (*storage.TSDBStatus, error) { if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } status, err := vmstorage.GetTSDBStatusForDate(date, topN, deadline.deadline) if err != nil { return nil, fmt.Errorf("error during tsdb status request: %w", err) } return status, nil } // GetSeriesCount returns the number of unique series. func GetSeriesCount(deadline Deadline) (uint64, error) { if deadline.Exceeded() { return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } n, err := vmstorage.GetSeriesCount(deadline.deadline) if err != nil { return 0, fmt.Errorf("error during series count request: %w", err) } return n, nil } func getStorageSearch() *storage.Search { v := ssPool.Get() if v == nil { return &storage.Search{} } return v.(*storage.Search) } func putStorageSearch(sr *storage.Search) { sr.MustClose() ssPool.Put(sr) } var ssPool sync.Pool // ProcessSearchQuery performs sq on storage nodes until the given deadline. // // Results.RunParallel or Results.Cancel must be called on the returned Results. func ProcessSearchQuery(sq *storage.SearchQuery, fetchData bool, deadline Deadline) (*Results, error) { if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String()) } // Setup search. tfss, err := setupTfss(sq.TagFilterss) if err != nil { return nil, err } tr := storage.TimeRange{ MinTimestamp: sq.MinTimestamp, MaxTimestamp: sq.MaxTimestamp, } if err := vmstorage.CheckTimeRange(tr); err != nil { return nil, err } vmstorage.WG.Add(1) defer vmstorage.WG.Done() sr := getStorageSearch() maxSeriesCount := sr.Init(vmstorage.Storage, tfss, tr, *maxMetricsPerSearch, deadline.deadline) m := make(map[string][]storage.BlockRef, maxSeriesCount) orderedMetricNames := make([]string, 0, maxSeriesCount) blocksRead := 0 for sr.NextMetricBlock() { blocksRead++ if deadline.Exceeded() { return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String()) } metricName := sr.MetricBlockRef.MetricName brs := m[string(metricName)] brs = append(brs, *sr.MetricBlockRef.BlockRef) if len(brs) > 1 { // An optimization: do not allocate a string for already existing metricName key in m m[string(metricName)] = brs } else { // An optimization for big number of time series with long metricName values: // use only a single copy of metricName for both orderedMetricNames and m. orderedMetricNames = append(orderedMetricNames, string(metricName)) m[orderedMetricNames[len(orderedMetricNames)-1]] = brs } } if err := sr.Error(); err != nil { if errors.Is(err, storage.ErrDeadlineExceeded) { return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String()) } return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err) } var rss Results rss.tr = tr rss.fetchData = fetchData rss.deadline = deadline pts := make([]packedTimeseries, len(orderedMetricNames)) for i, metricName := range orderedMetricNames { pts[i] = packedTimeseries{ metricName: metricName, brs: m[metricName], } } rss.packedTimeseries = pts rss.sr = sr return &rss, nil } func setupTfss(tagFilterss [][]storage.TagFilter) ([]*storage.TagFilters, error) { tfss := make([]*storage.TagFilters, 0, len(tagFilterss)) for _, tagFilters := range tagFilterss { tfs := storage.NewTagFilters() for i := range tagFilters { tf := &tagFilters[i] if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil { return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err) } } tfss = append(tfss, tfs) tfss = append(tfss, tfs.Finalize()...) } return tfss, nil } // Deadline contains deadline with the corresponding timeout for pretty error messages. type Deadline struct { deadline uint64 timeout time.Duration flagHint string } // NewDeadline returns deadline for the given timeout. // // flagHint must contain a hit for command-line flag, which could be used // in order to increase timeout. func NewDeadline(startTime time.Time, timeout time.Duration, flagHint string) Deadline { return Deadline{ deadline: uint64(startTime.Add(timeout).Unix()), timeout: timeout, flagHint: flagHint, } } // Exceeded returns true if deadline is exceeded. func (d *Deadline) Exceeded() bool { return fasttime.UnixTimestamp() > d.deadline } // String returns human-readable string representation for d. func (d *Deadline) String() string { return fmt.Sprintf("%.3f seconds; the timeout can be adjusted with `%s` command-line flag", d.timeout.Seconds(), d.flagHint) }