package streamaggr import ( "sync" "sync/atomic" "unsafe" "github.com/cespare/xxhash/v2" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/slicesutil" ) const dedupAggrShardsCount = 128 type dedupAggr struct { shards []dedupAggrShard stateSize int } type dedupAggrShard struct { dedupAggrShardNopad // The padding prevents false sharing on widespread platforms with // 128 mod (cache line size) = 0 . _ [128 - unsafe.Sizeof(dedupAggrShardNopad{})%128]byte } type dedupAggrState struct { m map[string]*dedupAggrSample samplesBuf []dedupAggrSample sizeBytes atomic.Uint64 itemsCount atomic.Uint64 } type dedupAggrShardNopad struct { mu sync.Mutex state []*dedupAggrState } type dedupAggrSample struct { value float64 timestamp int64 } func newDedupAggr(stateSize int) *dedupAggr { shards := make([]dedupAggrShard, dedupAggrShardsCount) return &dedupAggr{ shards: shards, stateSize: stateSize, } } func (da *dedupAggr) sizeBytes() uint64 { n := uint64(unsafe.Sizeof(*da)) for i := range da.shards { for _, state := range da.shards[i].state { if state != nil { n += state.sizeBytes.Load() } } } return n } func (da *dedupAggr) itemsCount() uint64 { n := uint64(0) for i := range da.shards { for _, state := range da.shards[i].state { if state != nil { n += state.itemsCount.Load() } } } return n } func (da *dedupAggr) pushSamples(data *pushCtxData) { pss := getPerShardSamples() shards := pss.shards for _, sample := range data.samples { h := xxhash.Sum64(bytesutil.ToUnsafeBytes(sample.key)) idx := h % uint64(len(shards)) shards[idx] = append(shards[idx], sample) } for i, shardSamples := range shards { if len(shardSamples) == 0 { continue } da.shards[i].pushSamples(shardSamples, da.stateSize, data.idx) } putPerShardSamples(pss) } func getDedupFlushCtx(deleteDeadline int64, dedupIdx, flushIdx int) *dedupFlushCtx { v := dedupFlushCtxPool.Get() if v == nil { v = &dedupFlushCtx{} } ctx := v.(*dedupFlushCtx) ctx.deleteDeadline = deleteDeadline ctx.dedupIdx = dedupIdx ctx.flushIdx = flushIdx return ctx } func putDedupFlushCtx(ctx *dedupFlushCtx) { ctx.reset() dedupFlushCtxPool.Put(ctx) } var dedupFlushCtxPool sync.Pool type dedupFlushCtx struct { samples []pushSample deleteDeadline int64 dedupIdx int flushIdx int } func (ctx *dedupFlushCtx) getPushCtxData(samples []pushSample) *pushCtxData { return &pushCtxData{ samples: samples, deleteDeadline: ctx.deleteDeadline, idx: ctx.flushIdx, } } func (ctx *dedupFlushCtx) reset() { clear(ctx.samples) ctx.samples = ctx.samples[:0] ctx.deleteDeadline = 0 ctx.dedupIdx = 0 ctx.flushIdx = 0 } func (da *dedupAggr) flush(f aggrPushFunc, deleteDeadline int64, dedupIdx, flushIdx int) { var wg sync.WaitGroup for i := range da.shards { flushConcurrencyCh <- struct{}{} wg.Add(1) go func(shard *dedupAggrShard) { defer func() { <-flushConcurrencyCh wg.Done() }() ctx := getDedupFlushCtx(deleteDeadline, dedupIdx, flushIdx) shard.flush(ctx, f) putDedupFlushCtx(ctx) }(&da.shards[i]) } wg.Wait() } type perShardSamples struct { shards [][]pushSample } func (pss *perShardSamples) reset() { shards := pss.shards for i, shardSamples := range shards { if len(shardSamples) > 0 { clear(shardSamples) shards[i] = shardSamples[:0] } } } func getPerShardSamples() *perShardSamples { v := perShardSamplesPool.Get() if v == nil { return &perShardSamples{ shards: make([][]pushSample, dedupAggrShardsCount), } } return v.(*perShardSamples) } func putPerShardSamples(pss *perShardSamples) { pss.reset() perShardSamplesPool.Put(pss) } var perShardSamplesPool sync.Pool func (das *dedupAggrShard) pushSamples(samples []pushSample, stateSize, dedupIdx int) { das.mu.Lock() defer das.mu.Unlock() if len(das.state) == 0 { das.state = make([]*dedupAggrState, stateSize) } state := das.state[dedupIdx] if state == nil { state = &dedupAggrState{ m: make(map[string]*dedupAggrSample, len(samples)), } das.state[dedupIdx] = state } samplesBuf := state.samplesBuf for _, sample := range samples { s, ok := state.m[sample.key] if !ok { samplesBuf = slicesutil.SetLength(samplesBuf, len(samplesBuf)+1) s = &samplesBuf[len(samplesBuf)-1] s.value = sample.value s.timestamp = sample.timestamp key := bytesutil.InternString(sample.key) state.m[key] = s das.state[dedupIdx].itemsCount.Add(1) das.state[dedupIdx].sizeBytes.Add(uint64(len(key)) + uint64(unsafe.Sizeof(key)+unsafe.Sizeof(s)+unsafe.Sizeof(*s))) continue } // Update the existing value according to logic described at https://docs.victoriametrics.com/#deduplication if sample.timestamp > s.timestamp || (sample.timestamp == s.timestamp && sample.value > s.value) { s.value = sample.value s.timestamp = sample.timestamp } } das.state[dedupIdx].samplesBuf = samplesBuf } func (das *dedupAggrShard) flush(ctx *dedupFlushCtx, f aggrPushFunc) { das.mu.Lock() var m map[string]*dedupAggrSample if len(das.state) == 0 { return } state := das.state[ctx.dedupIdx] if state != nil && len(state.m) > 0 { m = state.m das.state[ctx.dedupIdx].m = make(map[string]*dedupAggrSample, len(state.m)) das.state[ctx.dedupIdx].samplesBuf = make([]dedupAggrSample, 0, len(das.state[ctx.dedupIdx].samplesBuf)) das.state[ctx.dedupIdx].sizeBytes.Store(0) das.state[ctx.dedupIdx].itemsCount.Store(0) } das.mu.Unlock() if len(m) == 0 { return } dstSamples := ctx.samples for key, s := range m { dstSamples = append(dstSamples, pushSample{ key: key, value: s.value, timestamp: s.timestamp, }) // Limit the number of samples per each flush in order to limit memory usage. if len(dstSamples) >= 10_000 { data := ctx.getPushCtxData(dstSamples) f(data) clear(dstSamples) dstSamples = dstSamples[:0] } } data := ctx.getPushCtxData(dstSamples) f(data) ctx.samples = dstSamples }