package promql import ( "fmt" "math" "sort" "strconv" "strings" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/storage" "github.com/VictoriaMetrics/metrics" "github.com/VictoriaMetrics/metricsql" "github.com/cespare/xxhash/v2" ) var aggrFuncs = map[string]aggrFunc{ "any": aggrFuncAny, "avg": newAggrFunc(aggrFuncAvg), "bottomk": newAggrFuncTopK(true), "bottomk_avg": newAggrFuncRangeTopK(avgValue, true), "bottomk_max": newAggrFuncRangeTopK(maxValue, true), "bottomk_median": newAggrFuncRangeTopK(medianValue, true), "bottomk_last": newAggrFuncRangeTopK(lastValue, true), "bottomk_min": newAggrFuncRangeTopK(minValue, true), "count": newAggrFunc(aggrFuncCount), "count_values": aggrFuncCountValues, "distinct": newAggrFunc(aggrFuncDistinct), "geomean": newAggrFunc(aggrFuncGeomean), "group": newAggrFunc(aggrFuncGroup), "histogram": newAggrFunc(aggrFuncHistogram), "limitk": aggrFuncLimitK, "mad": newAggrFunc(aggrFuncMAD), "max": newAggrFunc(aggrFuncMax), "median": aggrFuncMedian, "min": newAggrFunc(aggrFuncMin), "mode": newAggrFunc(aggrFuncMode), "outliers_mad": aggrFuncOutliersMAD, "outliersk": aggrFuncOutliersK, "quantile": aggrFuncQuantile, "quantiles": aggrFuncQuantiles, "stddev": newAggrFunc(aggrFuncStddev), "stdvar": newAggrFunc(aggrFuncStdvar), "sum": newAggrFunc(aggrFuncSum), "sum2": newAggrFunc(aggrFuncSum2), "topk": newAggrFuncTopK(false), "topk_avg": newAggrFuncRangeTopK(avgValue, false), "topk_max": newAggrFuncRangeTopK(maxValue, false), "topk_median": newAggrFuncRangeTopK(medianValue, false), "topk_last": newAggrFuncRangeTopK(lastValue, false), "topk_min": newAggrFuncRangeTopK(minValue, false), "zscore": aggrFuncZScore, } type aggrFunc func(afa *aggrFuncArg) ([]*timeseries, error) type aggrFuncArg struct { args [][]*timeseries ae *metricsql.AggrFuncExpr ec *EvalConfig } func getAggrFunc(s string) aggrFunc { s = strings.ToLower(s) return aggrFuncs[s] } func newAggrFunc(afe func(tss []*timeseries) []*timeseries) aggrFunc { return func(afa *aggrFuncArg) ([]*timeseries, error) { tss, err := getAggrTimeseries(afa.args) if err != nil { return nil, err } return aggrFuncExt(func(tss []*timeseries, modififer *metricsql.ModifierExpr) []*timeseries { return afe(tss) }, tss, &afa.ae.Modifier, afa.ae.Limit, false) } } func getAggrTimeseries(args [][]*timeseries) ([]*timeseries, error) { if len(args) == 0 { return nil, fmt.Errorf("expecting at least one arg") } tss := args[0] for _, arg := range args[1:] { tss = append(tss, arg...) } return tss, nil } func removeGroupTags(metricName *storage.MetricName, modifier *metricsql.ModifierExpr) { groupOp := strings.ToLower(modifier.Op) switch groupOp { case "", "by": metricName.RemoveTagsOn(modifier.Args) case "without": metricName.RemoveTagsIgnoring(modifier.Args) // Reset metric group as Prometheus does on `aggr(...) without (...)` call. metricName.ResetMetricGroup() default: logger.Panicf("BUG: unknown group modifier: %q", groupOp) } } func aggrFuncExt(afe func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries, argOrig []*timeseries, modifier *metricsql.ModifierExpr, maxSeries int, keepOriginal bool) ([]*timeseries, error) { // Remove empty time series, e.g. series with all NaN samples, // since such series are ignored by aggregate functions. argOrig = removeEmptySeries(argOrig) arg := copyTimeseriesMetricNames(argOrig, keepOriginal) // Perform grouping. m := make(map[string][]*timeseries) bb := bbPool.Get() for i, ts := range arg { removeGroupTags(&ts.MetricName, modifier) bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName) k := bytesutil.InternBytes(bb.B) if keepOriginal { ts = argOrig[i] } tss := m[k] if tss == nil && maxSeries > 0 && len(m) >= maxSeries { // We already reached time series limit after grouping. Skip other time series. continue } tss = append(tss, ts) m[k] = tss } bbPool.Put(bb) srcTssCount := 0 dstTssCount := 0 rvs := make([]*timeseries, 0, len(m)) for _, tss := range m { rv := afe(tss, modifier) rvs = append(rvs, rv...) srcTssCount += len(tss) dstTssCount += len(rv) if dstTssCount > 2000 && dstTssCount > 16*srcTssCount { // This looks like count_values explosion. return nil, fmt.Errorf(`too many timeseries after aggragation; got %d; want less than %d`, dstTssCount, 16*srcTssCount) } } return rvs, nil } func aggrFuncAny(afa *aggrFuncArg) ([]*timeseries, error) { tss, err := getAggrTimeseries(afa.args) if err != nil { return nil, err } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { return tss[:1] } limit := afa.ae.Limit if limit > 1 { // Only a single time series per group must be returned limit = 1 } return aggrFuncExt(afe, tss, &afa.ae.Modifier, limit, true) } func aggrFuncGroup(tss []*timeseries) []*timeseries { // See https://github.com/prometheus/prometheus/commit/72425d4e3d14d209cc3f3f6e10e3240411303399 dst := tss[0] for i := range dst.Values { v := nan for _, ts := range tss { if math.IsNaN(ts.Values[i]) { continue } v = 1 } dst.Values[i] = v } return tss[:1] } func aggrFuncSum(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - nothing to sum. return tss } dst := tss[0] for i := range dst.Values { sum := float64(0) count := 0 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } sum += v count++ } if count == 0 { sum = nan } dst.Values[i] = sum } return tss[:1] } func aggrFuncSum2(tss []*timeseries) []*timeseries { dst := tss[0] for i := range dst.Values { sum2 := float64(0) count := 0 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } sum2 += v * v count++ } if count == 0 { sum2 = nan } dst.Values[i] = sum2 } return tss[:1] } func aggrFuncGeomean(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - nothing to geomean. return tss } dst := tss[0] for i := range dst.Values { p := 1.0 count := 0 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } p *= v count++ } if count == 0 { p = nan } dst.Values[i] = math.Pow(p, 1/float64(count)) } return tss[:1] } func aggrFuncHistogram(tss []*timeseries) []*timeseries { var h metrics.Histogram m := make(map[string]*timeseries) for i := range tss[0].Values { h.Reset() for _, ts := range tss { v := ts.Values[i] h.Update(v) } h.VisitNonZeroBuckets(func(vmrange string, count uint64) { ts := m[vmrange] if ts == nil { ts = ×eries{} ts.CopyFromShallowTimestamps(tss[0]) ts.MetricName.RemoveTag("vmrange") ts.MetricName.AddTag("vmrange", vmrange) values := ts.Values for k := range values { values[k] = 0 } m[vmrange] = ts } ts.Values[i] = float64(count) }) } rvs := make([]*timeseries, 0, len(m)) for _, ts := range m { rvs = append(rvs, ts) } return vmrangeBucketsToLE(rvs) } func aggrFuncMin(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - nothing to min. return tss } dst := tss[0] for i := range dst.Values { min := dst.Values[i] for _, ts := range tss { if math.IsNaN(min) || ts.Values[i] < min { min = ts.Values[i] } } dst.Values[i] = min } return tss[:1] } func aggrFuncMax(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - nothing to max. return tss } dst := tss[0] for i := range dst.Values { max := dst.Values[i] for _, ts := range tss { if math.IsNaN(max) || ts.Values[i] > max { max = ts.Values[i] } } dst.Values[i] = max } return tss[:1] } func aggrFuncAvg(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - nothing to avg. return tss } dst := tss[0] for i := range dst.Values { // Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation, // since it is slower and has no obvious benefits in increased precision. var sum float64 count := 0 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } count++ sum += v } avg := nan if count > 0 { avg = sum / float64(count) } dst.Values[i] = avg } return tss[:1] } func aggrFuncStddev(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - stddev over a single time series is zero values := tss[0].Values for i, v := range values { if !math.IsNaN(v) { values[i] = 0 } } return tss } rvs := aggrFuncStdvar(tss) dst := rvs[0] for i, v := range dst.Values { dst.Values[i] = math.Sqrt(v) } return rvs } func aggrFuncStdvar(tss []*timeseries) []*timeseries { if len(tss) == 1 { // Fast path - stdvar over a single time series is zero values := tss[0].Values for i, v := range values { if !math.IsNaN(v) { values[i] = 0 } } return tss } dst := tss[0] for i := range dst.Values { // See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation var avg, count, q float64 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } count++ avgNew := avg + (v-avg)/count q += (v - avg) * (v - avgNew) avg = avgNew } if count == 0 { q = nan } dst.Values[i] = q / count } return tss[:1] } func aggrFuncCount(tss []*timeseries) []*timeseries { dst := tss[0] for i := range dst.Values { count := 0 for _, ts := range tss { if math.IsNaN(ts.Values[i]) { continue } count++ } v := float64(count) if count == 0 { v = nan } dst.Values[i] = v } return tss[:1] } func aggrFuncDistinct(tss []*timeseries) []*timeseries { dst := tss[0] m := make(map[float64]struct{}, len(tss)) for i := range dst.Values { for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } m[v] = struct{}{} } n := float64(len(m)) if n == 0 { n = nan } dst.Values[i] = n for k := range m { delete(m, k) } } return tss[:1] } func aggrFuncMode(tss []*timeseries) []*timeseries { dst := tss[0] a := make([]float64, 0, len(tss)) for i := range dst.Values { a := a[:0] for _, ts := range tss { v := ts.Values[i] if !math.IsNaN(v) { a = append(a, v) } } dst.Values[i] = modeNoNaNs(nan, a) } return tss[:1] } func aggrFuncZScore(afa *aggrFuncArg) ([]*timeseries, error) { tss, err := getAggrTimeseries(afa.args) if err != nil { return nil, err } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { for i := range tss[0].Values { // Calculate avg and stddev for tss points at position i. // See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation var avg, count, q float64 for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } count++ avgNew := avg + (v-avg)/count q += (v - avg) * (v - avgNew) avg = avgNew } if count == 0 { // Cannot calculate z-score for NaN points. continue } // Calculate z-score for tss points at position i. // See https://en.wikipedia.org/wiki/Standard_score stddev := math.Sqrt(q / count) for _, ts := range tss { v := ts.Values[i] if math.IsNaN(v) { continue } ts.Values[i] = (v - avg) / stddev } } // Remove MetricGroup from all the tss. for _, ts := range tss { ts.MetricName.ResetMetricGroup() } return tss } return aggrFuncExt(afe, tss, &afa.ae.Modifier, afa.ae.Limit, true) } // modeNoNaNs returns mode for a. // // It is expected that a doesn't contain NaNs. // // The function modifies contents for a, so the caller must prepare it accordingly. // // See https://en.wikipedia.org/wiki/Mode_(statistics) func modeNoNaNs(prevValue float64, a []float64) float64 { if len(a) == 0 { return prevValue } sort.Float64s(a) j := -1 dMax := 0 mode := prevValue for i, v := range a { if prevValue == v { continue } if d := i - j; d > dMax || math.IsNaN(mode) { dMax = d mode = prevValue } j = i prevValue = v } if d := len(a) - j; d > dMax || math.IsNaN(mode) { mode = prevValue } return mode } func aggrFuncCountValues(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } dstLabel, err := getString(args[0], 0) if err != nil { return nil, err } // Remove dstLabel from grouping like Prometheus does. modifier := &afa.ae.Modifier switch strings.ToLower(modifier.Op) { case "without": modifier.Args = append(modifier.Args, dstLabel) case "by": dstArgs := modifier.Args[:0] for _, arg := range modifier.Args { if arg == dstLabel { continue } dstArgs = append(dstArgs, arg) } modifier.Args = dstArgs default: // Do nothing } afe := func(tss []*timeseries, modififer *metricsql.ModifierExpr) []*timeseries { m := make(map[float64]bool) for _, ts := range tss { for _, v := range ts.Values { if math.IsNaN(v) { continue } m[v] = true } } values := make([]float64, 0, len(m)) for v := range m { values = append(values, v) } sort.Float64s(values) var rvs []*timeseries for _, v := range values { var dst timeseries dst.CopyFromShallowTimestamps(tss[0]) dst.MetricName.RemoveTag(dstLabel) dst.MetricName.AddTag(dstLabel, strconv.FormatFloat(v, 'f', -1, 64)) for i := range dst.Values { count := 0 for _, ts := range tss { if ts.Values[i] == v { count++ } } n := float64(count) if n == 0 { n = nan } dst.Values[i] = n } rvs = append(rvs, &dst) } return rvs } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, false) } func newAggrFuncTopK(isReverse bool) aggrFunc { return func(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } ks, err := getScalar(args[0], 0) if err != nil { return nil, err } afe := func(tss []*timeseries, modififer *metricsql.ModifierExpr) []*timeseries { var tssNoNaNs []*timeseries for n := range tss[0].Values { // Drop series with NaNs at Values[n] before sorting. // This is needed for https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5506 tssNoNaNs = tssNoNaNs[:0] for _, ts := range tss { if !math.IsNaN(ts.Values[n]) { tssNoNaNs = append(tssNoNaNs, ts) } } sort.Slice(tssNoNaNs, func(i, j int) bool { a := tssNoNaNs[i].Values[n] b := tssNoNaNs[j].Values[n] if isReverse { a, b = b, a } return a < b }) fillNaNsAtIdx(n, ks[n], tssNoNaNs) } tss = removeEmptySeries(tss) reverseSeries(tss) return tss } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true) } } func newAggrFuncRangeTopK(f func(values []float64) float64, isReverse bool) aggrFunc { return func(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if len(args) < 2 { return nil, fmt.Errorf(`unexpected number of args; got %d; want at least %d`, len(args), 2) } if len(args) > 3 { return nil, fmt.Errorf(`unexpected number of args; got %d; want no more than %d`, len(args), 3) } ks, err := getScalar(args[0], 0) if err != nil { return nil, err } remainingSumTagName := "" if len(args) == 3 { remainingSumTagName, err = getString(args[2], 2) if err != nil { return nil, err } } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { return getRangeTopKTimeseries(tss, modifier, ks, remainingSumTagName, f, isReverse) } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true) } } func getRangeTopKTimeseries(tss []*timeseries, modifier *metricsql.ModifierExpr, ks []float64, remainingSumTagName string, f func(values []float64) float64, isReverse bool) []*timeseries { type tsWithValue struct { ts *timeseries value float64 } maxs := make([]tsWithValue, len(tss)) for i, ts := range tss { value := f(ts.Values) maxs[i] = tsWithValue{ ts: ts, value: value, } } // Drop maxs with NaNs before sorting. // This is needed for https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5506 maxsNoNaNs := make([]tsWithValue, 0, len(maxs)) for _, tsv := range maxs { if !math.IsNaN(tsv.value) { maxsNoNaNs = append(maxsNoNaNs, tsv) } } sort.Slice(maxsNoNaNs, func(i, j int) bool { a := maxsNoNaNs[i].value b := maxsNoNaNs[j].value if isReverse { a, b = b, a } return a < b }) for _, tsv := range maxs { if math.IsNaN(tsv.value) { maxsNoNaNs = append(maxsNoNaNs, tsv) } } for i := range maxsNoNaNs { tss[i] = maxsNoNaNs[i].ts } remainingSumTS := getRemainingSumTimeseries(tss, modifier, ks, remainingSumTagName) for i, k := range ks { fillNaNsAtIdx(i, k, tss) } if remainingSumTS != nil { tss = append(tss, remainingSumTS) } tss = removeEmptySeries(tss) reverseSeries(tss) return tss } func reverseSeries(tss []*timeseries) { j := len(tss) for i := 0; i < len(tss)/2; i++ { j-- tss[i], tss[j] = tss[j], tss[i] } } func getRemainingSumTimeseries(tss []*timeseries, modifier *metricsql.ModifierExpr, ks []float64, remainingSumTagName string) *timeseries { if len(remainingSumTagName) == 0 || len(tss) == 0 { return nil } var dst timeseries dst.CopyFromShallowTimestamps(tss[0]) removeGroupTags(&dst.MetricName, modifier) tagValue := remainingSumTagName n := strings.IndexByte(remainingSumTagName, '=') if n >= 0 { tagValue = remainingSumTagName[n+1:] remainingSumTagName = remainingSumTagName[:n] } dst.MetricName.RemoveTag(remainingSumTagName) dst.MetricName.AddTag(remainingSumTagName, tagValue) for i, k := range ks { kn := getIntK(k, len(tss)) var sum float64 count := 0 for _, ts := range tss[:len(tss)-kn] { v := ts.Values[i] if math.IsNaN(v) { continue } sum += v count++ } if count == 0 { sum = nan } dst.Values[i] = sum } return &dst } func fillNaNsAtIdx(idx int, k float64, tss []*timeseries) { kn := getIntK(k, len(tss)) for _, ts := range tss[:len(tss)-kn] { ts.Values[idx] = nan } } func getIntK(k float64, kMax int) int { if math.IsNaN(k) { return 0 } kn := floatToIntBounded(k) if kn < 0 { return 0 } if kn > kMax { return kMax } return kn } func minValue(values []float64) float64 { min := nan for len(values) > 0 && math.IsNaN(min) { min = values[0] values = values[1:] } for _, v := range values { if !math.IsNaN(v) && v < min { min = v } } return min } func maxValue(values []float64) float64 { max := nan for len(values) > 0 && math.IsNaN(max) { max = values[0] values = values[1:] } for _, v := range values { if !math.IsNaN(v) && v > max { max = v } } return max } func avgValue(values []float64) float64 { sum := float64(0) count := 0 for _, v := range values { if math.IsNaN(v) { continue } count++ sum += v } if count == 0 { return nan } return sum / float64(count) } func medianValue(values []float64) float64 { return quantile(0.5, values) } func lastValue(values []float64) float64 { values = skipTrailingNaNs(values) if len(values) == 0 { return nan } return values[len(values)-1] } // quantiles calculates the given phis from originValues without modifying originValues, appends them to qs and returns the result. func quantiles(qs, phis []float64, originValues []float64) []float64 { a := getFloat64s() a.prepareForQuantileFloat64(originValues) qs = quantilesSorted(qs, phis, a.A) putFloat64s(a) return qs } // quantile calculates the given phi from originValues without modifying originValues func quantile(phi float64, originValues []float64) float64 { a := getFloat64s() a.prepareForQuantileFloat64(originValues) q := quantileSorted(phi, a.A) putFloat64s(a) return q } // prepareForQuantileFloat64 copies items from src to a but removes NaNs and sorts items in a. func (a *float64s) prepareForQuantileFloat64(src []float64) { dst := a.A[:0] for _, v := range src { if math.IsNaN(v) { continue } dst = append(dst, v) } a.A = dst // Use sort.Sort instead of sort.Float64s in order to avoid a memory allocation sort.Sort(a) } func (a *float64s) Len() int { return len(a.A) } func (a *float64s) Swap(i, j int) { x := a.A x[i], x[j] = x[j], x[i] } func (a *float64s) Less(i, j int) bool { x := a.A return x[i] < x[j] } // quantilesSorted calculates the given phis over a sorted list of values, appends them to qs and returns the result. // // It is expected that values won't contain NaN items. // The implementation mimics Prometheus implementation for compatibility's sake. func quantilesSorted(qs, phis []float64, values []float64) []float64 { for _, phi := range phis { q := quantileSorted(phi, values) qs = append(qs, q) } return qs } // quantileSorted calculates the given quantile over a sorted list of values. // // It is expected that values won't contain NaN items. // The implementation mimics Prometheus implementation for compatibility's sake. func quantileSorted(phi float64, values []float64) float64 { if len(values) == 0 || math.IsNaN(phi) { return nan } if phi < 0 { return math.Inf(-1) } if phi > 1 { return math.Inf(+1) } n := float64(len(values)) rank := phi * (n - 1) lowerIndex := math.Max(0, math.Floor(rank)) upperIndex := math.Min(n-1, lowerIndex+1) weight := rank - math.Floor(rank) return values[int(lowerIndex)]*(1-weight) + values[int(upperIndex)]*weight } func aggrFuncMAD(tss []*timeseries) []*timeseries { // Calculate medians for each point across tss. medians := getPerPointMedians(tss) // Calculate MAD values multipled by tolerance for each point across tss. // See https://en.wikipedia.org/wiki/Median_absolute_deviation mads := getPerPointMADs(tss, medians) tss[0].Values = append(tss[0].Values[:0], mads...) return tss[:1] } func aggrFuncOutliersMAD(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } tolerances, err := getScalar(args[0], 0) if err != nil { return nil, err } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { // Calculate medians for each point across tss. medians := getPerPointMedians(tss) // Calculate MAD values multipled by tolerance for each point across tss. // See https://en.wikipedia.org/wiki/Median_absolute_deviation mads := getPerPointMADs(tss, medians) for n := range mads { mads[n] *= tolerances[n] } // Leave only time series with at least a single peak above the MAD multiplied by tolerance. tssDst := tss[:0] for _, ts := range tss { values := ts.Values for n, v := range values { ad := math.Abs(v - medians[n]) mad := mads[n] if ad > mad { tssDst = append(tssDst, ts) break } } } return tssDst } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true) } func aggrFuncOutliersK(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } ks, err := getScalar(args[0], 0) if err != nil { return nil, err } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { // Calculate medians for each point across tss. medians := getPerPointMedians(tss) // Return topK time series with the highest variance from median. f := func(values []float64) float64 { sum2 := float64(0) for n, v := range values { d := v - medians[n] sum2 += d * d } return sum2 } return getRangeTopKTimeseries(tss, &afa.ae.Modifier, ks, "", f, false) } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true) } func getPerPointMedians(tss []*timeseries) []float64 { if len(tss) == 0 { logger.Panicf("BUG: expecting non-empty tss") } medians := make([]float64, len(tss[0].Values)) a := getFloat64s() values := a.A for n := range medians { values = values[:0] for j := range tss { v := tss[j].Values[n] if !math.IsNaN(v) { values = append(values, v) } } medians[n] = quantile(0.5, values) } a.A = values putFloat64s(a) return medians } func getPerPointMADs(tss []*timeseries, medians []float64) []float64 { mads := make([]float64, len(medians)) a := getFloat64s() values := a.A for n, median := range medians { values = values[:0] for j := range tss { v := tss[j].Values[n] if !math.IsNaN(v) { ad := math.Abs(v - median) values = append(values, ad) } } mads[n] = quantile(0.5, values) } a.A = values putFloat64s(a) return mads } func aggrFuncLimitK(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } limit, err := getIntNumber(args[0], 0) if err != nil { return nil, fmt.Errorf("cannot obtain limit arg: %w", err) } if limit < 0 { limit = 0 } afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { // Sort series by metricName hash in order to get consistent set of output series // across multiple calls to limitk() function. // Sort series by hash in order to guarantee uniform selection across series. type hashSeries struct { h uint64 ts *timeseries } hss := make([]hashSeries, len(tss)) d := xxhash.New() for i, ts := range tss { h := getHash(d, &ts.MetricName) hss[i] = hashSeries{ h: h, ts: ts, } } sort.Slice(hss, func(i, j int) bool { return hss[i].h < hss[j].h }) for i, hs := range hss { tss[i] = hs.ts } if limit < len(tss) { tss = tss[:limit] } return tss } return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true) } func getHash(d *xxhash.Digest, mn *storage.MetricName) uint64 { d.Reset() _, _ = d.Write(mn.MetricGroup) for _, tag := range mn.Tags { _, _ = d.Write(tag.Key) _, _ = d.Write(tag.Value) } return d.Sum64() } func aggrFuncQuantiles(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if len(args) < 3 { return nil, fmt.Errorf("unexpected number of args: %d; expecting at least 3 args", len(args)) } dstLabel, err := getString(args[0], 0) if err != nil { return nil, fmt.Errorf("cannot obtain dstLabel: %w", err) } phiArgs := args[1 : len(args)-1] phis := make([]float64, len(phiArgs)) for i, phiArg := range phiArgs { phisLocal, err := getScalar(phiArg, i+1) if err != nil { return nil, err } if len(phis) == 0 { logger.Panicf("BUG: expecting at least a single sample") } phis[i] = phisLocal[0] } argOrig := args[len(args)-1] afe := func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { tssDst := make([]*timeseries, len(phiArgs)) for j := range tssDst { ts := ×eries{} ts.CopyFromShallowTimestamps(tss[0]) ts.MetricName.RemoveTag(dstLabel) ts.MetricName.AddTag(dstLabel, fmt.Sprintf("%g", phis[j])) tssDst[j] = ts } b := getFloat64s() qs := b.A a := getFloat64s() values := a.A for n := range tss[0].Values { values = values[:0] for j := range tss { values = append(values, tss[j].Values[n]) } qs = quantiles(qs[:0], phis, values) for j := range tssDst { tssDst[j].Values[n] = qs[j] } } a.A = values putFloat64s(a) b.A = qs putFloat64s(b) return tssDst } return aggrFuncExt(afe, argOrig, &afa.ae.Modifier, afa.ae.Limit, false) } func aggrFuncQuantile(afa *aggrFuncArg) ([]*timeseries, error) { args := afa.args if err := expectTransformArgsNum(args, 2); err != nil { return nil, err } phis, err := getScalar(args[0], 0) if err != nil { return nil, err } afe := newAggrQuantileFunc(phis) return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, false) } func aggrFuncMedian(afa *aggrFuncArg) ([]*timeseries, error) { tss, err := getAggrTimeseries(afa.args) if err != nil { return nil, err } phis := evalNumber(afa.ec, 0.5)[0].Values afe := newAggrQuantileFunc(phis) return aggrFuncExt(afe, tss, &afa.ae.Modifier, afa.ae.Limit, false) } func newAggrQuantileFunc(phis []float64) func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { return func(tss []*timeseries, modifier *metricsql.ModifierExpr) []*timeseries { dst := tss[0] a := getFloat64s() values := a.A for n := range dst.Values { values = values[:0] for j := range tss { values = append(values, tss[j].Values[n]) } dst.Values[n] = quantile(phis[n], values) } a.A = values putFloat64s(a) tss[0] = dst return tss[:1] } } func floatToIntBounded(f float64) int { if f > math.MaxInt { return math.MaxInt } if f < math.MinInt { return math.MinInt } return int(f) }