package logstorage import ( "fmt" "math" "regexp" "strconv" "strings" "time" "unicode" "unicode/utf8" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/promutils" ) type lexer struct { // s contains unparsed tail of sOrig s string // sOrig contains the original string sOrig string // token contains the current token // // an empty token means the end of s token string // rawToken contains raw token before unquoting rawToken string // prevToken contains the previously parsed token prevToken string // isSkippedSpace is set to true if there was a whitespace before the token in s isSkippedSpace bool // currentTimestamp is the current timestamp in nanoseconds currentTimestamp int64 } type lexerState struct { lex lexer } func (lex *lexer) backupState() *lexerState { return &lexerState{ lex: *lex, } } func (lex *lexer) restoreState(ls *lexerState) { *lex = ls.lex } // newLexer returns new lexer for the given s. // // The lex.token points to the first token in s. func newLexer(s string) *lexer { lex := &lexer{ s: s, sOrig: s, currentTimestamp: time.Now().UnixNano(), } lex.nextToken() return lex } func (lex *lexer) isEnd() bool { return len(lex.s) == 0 && len(lex.token) == 0 && len(lex.rawToken) == 0 } func (lex *lexer) isQuotedToken() bool { return lex.token != lex.rawToken } func (lex *lexer) isPrevToken(tokens ...string) bool { for _, token := range tokens { if token == lex.prevToken { return true } } return false } func (lex *lexer) isKeyword(keywords ...string) bool { if lex.isQuotedToken() { return false } tokenLower := strings.ToLower(lex.token) for _, kw := range keywords { if kw == tokenLower { return true } } return false } func (lex *lexer) context() string { tail := lex.sOrig tail = tail[:len(tail)-len(lex.s)] if len(tail) > 50 { tail = tail[len(tail)-50:] } return tail } func (lex *lexer) mustNextToken() bool { lex.nextToken() return !lex.isEnd() } func (lex *lexer) nextCharToken(s string, size int) { lex.token = s[:size] lex.rawToken = lex.token lex.s = s[size:] } // nextToken updates lex.token to the next token. func (lex *lexer) nextToken() { s := lex.s lex.prevToken = lex.token lex.token = "" lex.rawToken = "" lex.isSkippedSpace = false if len(s) == 0 { return } r, size := utf8.DecodeRuneInString(s) if r == utf8.RuneError { lex.nextCharToken(s, size) return } // Skip whitespace for unicode.IsSpace(r) { lex.isSkippedSpace = true s = s[size:] r, size = utf8.DecodeRuneInString(s) } // Try decoding simple token tokenLen := 0 for isTokenRune(r) || r == '.' { tokenLen += size r, size = utf8.DecodeRuneInString(s[tokenLen:]) } if tokenLen > 0 { lex.nextCharToken(s, tokenLen) return } switch r { case '"', '`': prefix, err := strconv.QuotedPrefix(s) if err != nil { lex.nextCharToken(s, 1) return } token, err := strconv.Unquote(prefix) if err != nil { lex.nextCharToken(s, 1) return } lex.token = token lex.rawToken = prefix lex.s = s[len(prefix):] return case '\'': var b []byte for !strings.HasPrefix(s[size:], "'") { ch, _, newTail, err := strconv.UnquoteChar(s[size:], '\'') if err != nil { lex.nextCharToken(s, 1) return } b = utf8.AppendRune(b, ch) size += len(s[size:]) - len(newTail) } size++ lex.token = string(b) lex.rawToken = string(s[:size]) lex.s = s[size:] return case '=': if strings.HasPrefix(s[size:], "~") { lex.nextCharToken(s, 2) return } lex.nextCharToken(s, 1) return case '!': if strings.HasPrefix(s[size:], "~") || strings.HasPrefix(s[size:], "=") { lex.nextCharToken(s, 2) return } lex.nextCharToken(s, 1) return default: lex.nextCharToken(s, size) return } } // Query represents LogsQL query. type Query struct { f filter pipes []pipe } // String returns string representation for q. func (q *Query) String() string { s := q.f.String() for _, p := range q.pipes { s += " | " + p.String() } return s } // AddTimeFilter adds global filter _time:[start ... end] to q. func (q *Query) AddTimeFilter(start, end int64) { startStr := marshalTimestampRFC3339NanoString(nil, start) endStr := marshalTimestampRFC3339NanoString(nil, end) ft := &filterTime{ minTimestamp: start, maxTimestamp: end, stringRepr: fmt.Sprintf("[%s, %s]", startStr, endStr), } fa, ok := q.f.(*filterAnd) if ok { filters := make([]filter, len(fa.filters)+1) filters[0] = ft copy(filters[1:], fa.filters) fa.filters = filters } else { q.f = &filterAnd{ filters: []filter{ft, q.f}, } } } // AddPipeLimit adds `| limit n` pipe to q. // // See https://docs.victoriametrics.com/victorialogs/logsql/#limit-pipe func (q *Query) AddPipeLimit(n uint64) { q.pipes = append(q.pipes, &pipeLimit{ limit: n, }) } // Optimize tries optimizing the query. func (q *Query) Optimize() { q.pipes = optimizeSortOffsetPipes(q.pipes) q.pipes = optimizeSortLimitPipes(q.pipes) q.pipes = optimizeUniqLimitPipes(q.pipes) q.pipes = optimizeFilterPipes(q.pipes) // Merge `q | filter ...` into q. if len(q.pipes) > 0 { pf, ok := q.pipes[0].(*pipeFilter) if ok { q.f = mergeFiltersAnd(q.f, pf.f) q.pipes = append(q.pipes[:0], q.pipes[1:]...) } } // Optimize `q | field_names ...` by marking pipeFieldNames as first pipe. if len(q.pipes) > 0 { pf, ok := q.pipes[0].(*pipeFieldNames) if ok { pf.isFirstPipe = true } } // Substitute '*' prefixFilter with filterNoop in order to avoid reading _msg data. q.f = removeStarFilters(q.f) // Call Optimize for queries from 'in(query)' filters. optimizeFilterIn(q.f) for _, p := range q.pipes { switch t := p.(type) { case *pipeStats: for _, f := range t.funcs { if f.iff != nil { optimizeFilterIn(f.iff) } } } } } func removeStarFilters(f filter) filter { visitFunc := func(f filter) bool { fp, ok := f.(*filterPrefix) return ok && isMsgFieldName(fp.fieldName) && fp.prefix == "" } copyFunc := func(_ filter) (filter, error) { fn := &filterNoop{} return fn, nil } f, err := copyFilter(f, visitFunc, copyFunc) if err != nil { logger.Fatalf("BUG: unexpected error: %s", err) } return f } func optimizeFilterIn(f filter) { visitFunc := func(f filter) bool { fi, ok := f.(*filterIn) if ok && fi.q != nil { fi.q.Optimize() } return false } _ = visitFilter(f, visitFunc) } func optimizeSortOffsetPipes(pipes []pipe) []pipe { // Merge 'sort ... | offset ...' into 'sort ... offset ...' i := 1 for i < len(pipes) { po, ok := pipes[i].(*pipeOffset) if !ok { i++ continue } ps, ok := pipes[i-1].(*pipeSort) if !ok { i++ continue } if ps.offset == 0 && ps.limit == 0 { ps.offset = po.offset } pipes = append(pipes[:i], pipes[i+1:]...) } return pipes } func optimizeSortLimitPipes(pipes []pipe) []pipe { // Merge 'sort ... | limit ...' into 'sort ... limit ...' i := 1 for i < len(pipes) { pl, ok := pipes[i].(*pipeLimit) if !ok { i++ continue } ps, ok := pipes[i-1].(*pipeSort) if !ok { i++ continue } if ps.limit == 0 || pl.limit < ps.limit { ps.limit = pl.limit } pipes = append(pipes[:i], pipes[i+1:]...) } return pipes } func optimizeUniqLimitPipes(pipes []pipe) []pipe { // Merge 'uniq ... | limit ...' into 'uniq ... limit ...' i := 1 for i < len(pipes) { pl, ok := pipes[i].(*pipeLimit) if !ok { i++ continue } pu, ok := pipes[i-1].(*pipeUniq) if !ok { i++ continue } if pu.limit == 0 || pl.limit < pu.limit { pu.limit = pl.limit } pipes = append(pipes[:i], pipes[i+1:]...) } return pipes } func optimizeFilterPipes(pipes []pipe) []pipe { // Merge multiple `| filter ...` pipes into a single `filter ...` pipe i := 1 for i < len(pipes) { pf1, ok := pipes[i-1].(*pipeFilter) if !ok { i++ continue } pf2, ok := pipes[i].(*pipeFilter) if !ok { i++ continue } pf1.f = mergeFiltersAnd(pf1.f, pf2.f) pipes = append(pipes[:i], pipes[i+1:]...) } return pipes } func mergeFiltersAnd(f1, f2 filter) filter { fa1, ok := f1.(*filterAnd) if ok { fa1.filters = append(fa1.filters, f2) return fa1 } fa2, ok := f2.(*filterAnd) if ok { filters := make([]filter, len(fa2.filters)+1) filters[0] = f1 copy(filters[1:], fa2.filters) fa2.filters = filters return fa2 } return &filterAnd{ filters: []filter{f1, f2}, } } func (q *Query) getNeededColumns() ([]string, []string) { neededFields := newFieldsSet() neededFields.add("*") unneededFields := newFieldsSet() pipes := q.pipes for i := len(pipes) - 1; i >= 0; i-- { pipes[i].updateNeededFields(neededFields, unneededFields) } return neededFields.getAll(), unneededFields.getAll() } // ParseQuery parses s. func ParseQuery(s string) (*Query, error) { lex := newLexer(s) q, err := parseQuery(lex) if err != nil { return nil, err } if !lex.isEnd() { return nil, fmt.Errorf("unexpected unparsed tail after [%s]; context: [%s]; tail: [%s]", q, lex.context(), lex.s) } return q, nil } func parseQuery(lex *lexer) (*Query, error) { f, err := parseFilter(lex) if err != nil { return nil, fmt.Errorf("%w; context: [%s]", err, lex.context()) } q := &Query{ f: f, } pipes, err := parsePipes(lex) if err != nil { return nil, fmt.Errorf("%w; context: [%s]", err, lex.context()) } q.pipes = pipes return q, nil } func parseFilter(lex *lexer) (filter, error) { if lex.isKeyword("|", "") { return nil, fmt.Errorf("missing query") } fo, err := parseFilterOr(lex, "") if err != nil { return nil, err } return fo, nil } func parseFilterOr(lex *lexer, fieldName string) (filter, error) { var filters []filter for { f, err := parseFilterAnd(lex, fieldName) if err != nil { return nil, err } filters = append(filters, f) switch { case lex.isKeyword("|", ")", ""): if len(filters) == 1 { return filters[0], nil } fo := &filterOr{ filters: filters, } return fo, nil case lex.isKeyword("or"): if !lex.mustNextToken() { return nil, fmt.Errorf("missing filter after 'or'") } } } } func parseFilterAnd(lex *lexer, fieldName string) (filter, error) { var filters []filter for { f, err := parseGenericFilter(lex, fieldName) if err != nil { return nil, err } filters = append(filters, f) switch { case lex.isKeyword("or", "|", ")", ""): if len(filters) == 1 { return filters[0], nil } fa := &filterAnd{ filters: filters, } return fa, nil case lex.isKeyword("and"): if !lex.mustNextToken() { return nil, fmt.Errorf("missing filter after 'and'") } } } } func parseGenericFilter(lex *lexer, fieldName string) (filter, error) { // Check for special keywords switch { case lex.isKeyword(":"): if !lex.mustNextToken() { return nil, fmt.Errorf("missing filter after ':'") } return parseGenericFilter(lex, fieldName) case lex.isKeyword("*"): lex.nextToken() f := &filterPrefix{ fieldName: fieldName, prefix: "", } return f, nil case lex.isKeyword("("): if !lex.isSkippedSpace && !lex.isPrevToken("", ":", "(", "!", "not") { return nil, fmt.Errorf("missing whitespace before the search word %q", lex.prevToken) } return parseParensFilter(lex, fieldName) case lex.isKeyword(">"): return parseFilterGT(lex, fieldName) case lex.isKeyword("<"): return parseFilterLT(lex, fieldName) case lex.isKeyword("not", "!"): return parseFilterNot(lex, fieldName) case lex.isKeyword("exact"): return parseFilterExact(lex, fieldName) case lex.isKeyword("i"): return parseAnyCaseFilter(lex, fieldName) case lex.isKeyword("in"): return parseFilterIn(lex, fieldName) case lex.isKeyword("ipv4_range"): return parseFilterIPv4Range(lex, fieldName) case lex.isKeyword("len_range"): return parseFilterLenRange(lex, fieldName) case lex.isKeyword("range"): return parseFilterRange(lex, fieldName) case lex.isKeyword("re"): return parseFilterRegexp(lex, fieldName) case lex.isKeyword("seq"): return parseFilterSequence(lex, fieldName) case lex.isKeyword("string_range"): return parseFilterStringRange(lex, fieldName) case lex.isKeyword(`"`, "'", "`"): return nil, fmt.Errorf("improperly quoted string") case lex.isKeyword(",", ")", "[", "]"): return nil, fmt.Errorf("unexpected token %q", lex.token) } phrase, err := getCompoundPhrase(lex, fieldName != "") if err != nil { return nil, err } return parseFilterForPhrase(lex, phrase, fieldName) } func getCompoundPhrase(lex *lexer, allowColon bool) (string, error) { stopTokens := []string{"*", ",", "(", ")", "[", "]", "|", ""} if lex.isKeyword(stopTokens...) { return "", fmt.Errorf("compound phrase cannot start with '%s'", lex.token) } phrase := lex.token rawPhrase := lex.rawToken lex.nextToken() suffix := getCompoundSuffix(lex, allowColon) if suffix == "" { return phrase, nil } return rawPhrase + suffix, nil } func getCompoundSuffix(lex *lexer, allowColon bool) string { s := "" stopTokens := []string{"*", ",", "(", ")", "[", "]", "|", ""} if !allowColon { stopTokens = append(stopTokens, ":") } for !lex.isSkippedSpace && !lex.isKeyword(stopTokens...) { s += lex.rawToken lex.nextToken() } return s } func getCompoundToken(lex *lexer) (string, error) { stopTokens := []string{",", "(", ")", "[", "]", "|", ""} if lex.isKeyword(stopTokens...) { return "", fmt.Errorf("compound token cannot start with '%s'", lex.token) } s := lex.token rawS := lex.rawToken lex.nextToken() suffix := "" for !lex.isSkippedSpace && !lex.isKeyword(stopTokens...) { s += lex.token lex.nextToken() } if suffix == "" { return s, nil } return rawS + suffix, nil } func getCompoundFuncArg(lex *lexer) string { if lex.isKeyword("*") { return "" } arg := lex.token rawArg := lex.rawToken lex.nextToken() suffix := "" for !lex.isSkippedSpace && !lex.isKeyword("*", ",", "(", ")", "|", "") { suffix += lex.rawToken lex.nextToken() } if suffix == "" { return arg } return rawArg + suffix } func parseFilterForPhrase(lex *lexer, phrase, fieldName string) (filter, error) { if fieldName != "" || !lex.isKeyword(":") { // The phrase is either a search phrase or a search prefix. if lex.isKeyword("*") && !lex.isSkippedSpace { // The phrase is a search prefix in the form `foo*`. lex.nextToken() f := &filterPrefix{ fieldName: fieldName, prefix: phrase, } return f, nil } // The phrase is a search phrase. f := &filterPhrase{ fieldName: fieldName, phrase: phrase, } return f, nil } // The phrase contains the field name. fieldName = phrase if !lex.mustNextToken() { return nil, fmt.Errorf("missing filter after field name %s", quoteTokenIfNeeded(fieldName)) } switch fieldName { case "_time": return parseFilterTimeWithOffset(lex) case "_stream": return parseFilterStream(lex) default: return parseGenericFilter(lex, fieldName) } } func parseParensFilter(lex *lexer, fieldName string) (filter, error) { if !lex.mustNextToken() { return nil, fmt.Errorf("missing filter after '('") } f, err := parseFilterOr(lex, fieldName) if err != nil { return nil, err } if !lex.isKeyword(")") { return nil, fmt.Errorf("unexpected token %q instead of ')'", lex.token) } lex.nextToken() return f, nil } func parseFilterNot(lex *lexer, fieldName string) (filter, error) { notKeyword := lex.token if !lex.mustNextToken() { return nil, fmt.Errorf("missing filters after '%s'", notKeyword) } f, err := parseGenericFilter(lex, fieldName) if err != nil { return nil, err } fn, ok := f.(*filterNot) if ok { return fn.f, nil } fn = &filterNot{ f: f, } return fn, nil } func parseAnyCaseFilter(lex *lexer, fieldName string) (filter, error) { return parseFuncArgMaybePrefix(lex, "i", fieldName, func(phrase string, isFilterPrefix bool) (filter, error) { if isFilterPrefix { f := &filterAnyCasePrefix{ fieldName: fieldName, prefix: phrase, } return f, nil } f := &filterAnyCasePhrase{ fieldName: fieldName, phrase: phrase, } return f, nil }) } func parseFuncArgMaybePrefix(lex *lexer, funcName, fieldName string, callback func(arg string, isPrefiFilter bool) (filter, error)) (filter, error) { phrase := lex.token lex.nextToken() if !lex.isKeyword("(") { phrase += getCompoundSuffix(lex, fieldName != "") return parseFilterForPhrase(lex, phrase, fieldName) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing arg for %s()", funcName) } phrase = getCompoundFuncArg(lex) isFilterPrefix := false if lex.isKeyword("*") && !lex.isSkippedSpace { isFilterPrefix = true if !lex.mustNextToken() { return nil, fmt.Errorf("missing ')' after %s()", funcName) } } if !lex.isKeyword(")") { return nil, fmt.Errorf("unexpected token %q instead of ')' in %s()", lex.token, funcName) } lex.nextToken() return callback(phrase, isFilterPrefix) } func parseFilterLenRange(lex *lexer, fieldName string) (filter, error) { funcName := lex.token return parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { if len(args) != 2 { return nil, fmt.Errorf("unexpected number of args for %s(); got %d; want 2", funcName, len(args)) } minLen, err := parseUint(args[0]) if err != nil { return nil, fmt.Errorf("cannot parse minLen at %s(): %w", funcName, err) } maxLen, err := parseUint(args[1]) if err != nil { return nil, fmt.Errorf("cannot parse maxLen at %s(): %w", funcName, err) } stringRepr := "(" + args[0] + ", " + args[1] + ")" fr := &filterLenRange{ fieldName: fieldName, minLen: minLen, maxLen: maxLen, stringRepr: stringRepr, } return fr, nil }) } func parseFilterStringRange(lex *lexer, fieldName string) (filter, error) { funcName := lex.token return parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { if len(args) != 2 { return nil, fmt.Errorf("unexpected number of args for %s(); got %d; want 2", funcName, len(args)) } fr := &filterStringRange{ fieldName: fieldName, minValue: args[0], maxValue: args[1], } return fr, nil }) } func parseFilterIPv4Range(lex *lexer, fieldName string) (filter, error) { funcName := lex.token return parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { if len(args) == 1 { minValue, maxValue, ok := tryParseIPv4CIDR(args[0]) if !ok { return nil, fmt.Errorf("cannot parse IPv4 address or IPv4 CIDR %q at %s()", args[0], funcName) } fr := &filterIPv4Range{ fieldName: fieldName, minValue: minValue, maxValue: maxValue, } return fr, nil } if len(args) != 2 { return nil, fmt.Errorf("unexpected number of args for %s(); got %d; want 2", funcName, len(args)) } minValue, ok := tryParseIPv4(args[0]) if !ok { return nil, fmt.Errorf("cannot parse lower bound ip %q in %s()", funcName, args[0]) } maxValue, ok := tryParseIPv4(args[1]) if !ok { return nil, fmt.Errorf("cannot parse upper bound ip %q in %s()", funcName, args[1]) } fr := &filterIPv4Range{ fieldName: fieldName, minValue: minValue, maxValue: maxValue, } return fr, nil }) } func tryParseIPv4CIDR(s string) (uint32, uint32, bool) { n := strings.IndexByte(s, '/') if n < 0 { n, ok := tryParseIPv4(s) return n, n, ok } ip, ok := tryParseIPv4(s[:n]) if !ok { return 0, 0, false } maskBits, ok := tryParseUint64(s[n+1:]) if !ok || maskBits > 32 { return 0, 0, false } mask := uint32((1 << (32 - maskBits)) - 1) minValue := ip &^ mask maxValue := ip | mask return minValue, maxValue, true } func parseFilterIn(lex *lexer, fieldName string) (filter, error) { if !lex.isKeyword("in") { return nil, fmt.Errorf("expecting 'in' keyword") } // Try parsing in(arg1, ..., argN) at first lexState := lex.backupState() fi, err := parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { fi := &filterIn{ fieldName: fieldName, values: args, } return fi, nil }) if err == nil { return fi, nil } // Parse in(query | fields someField) then lex.restoreState(lexState) lex.nextToken() if !lex.isKeyword("(") { return nil, fmt.Errorf("missing '(' after 'in'") } lex.nextToken() q, err := parseQuery(lex) if err != nil { return nil, fmt.Errorf("cannot parse query inside 'in(...)': %w", err) } if !lex.isKeyword(")") { return nil, fmt.Errorf("missing ')' after 'in(%s)'", q) } lex.nextToken() qFieldName, err := getFieldNameFromPipes(q.pipes) if err != nil { return nil, fmt.Errorf("cannot determine field name for values in 'in(%s)': %w", q, err) } fi = &filterIn{ fieldName: fieldName, needExecuteQuery: true, q: q, qFieldName: qFieldName, } return fi, nil } func getFieldNameFromPipes(pipes []pipe) (string, error) { if len(pipes) == 0 { return "", fmt.Errorf("missing 'fields' or 'uniq' pipes at the end of query") } switch t := pipes[len(pipes)-1].(type) { case *pipeFields: if t.containsStar || len(t.fields) != 1 { return "", fmt.Errorf("'%s' pipe must contain only a single non-star field name", t) } return t.fields[0], nil case *pipeUniq: if len(t.byFields) != 1 { return "", fmt.Errorf("'%s' pipe must contain only a single non-star field name", t) } return t.byFields[0], nil default: return "", fmt.Errorf("missing 'fields' or 'uniq' pipe at the end of query") } } func parseFilterSequence(lex *lexer, fieldName string) (filter, error) { return parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { fs := &filterSequence{ fieldName: fieldName, phrases: args, } return fs, nil }) } func parseFilterExact(lex *lexer, fieldName string) (filter, error) { return parseFuncArgMaybePrefix(lex, "exact", fieldName, func(phrase string, isFilterPrefix bool) (filter, error) { if isFilterPrefix { f := &filterExactPrefix{ fieldName: fieldName, prefix: phrase, } return f, nil } f := &filterExact{ fieldName: fieldName, value: phrase, } return f, nil }) } func parseFilterRegexp(lex *lexer, fieldName string) (filter, error) { funcName := lex.token return parseFuncArg(lex, fieldName, func(arg string) (filter, error) { re, err := regexp.Compile(arg) if err != nil { return nil, fmt.Errorf("invalid regexp %q for %s(): %w", arg, funcName, err) } fr := &filterRegexp{ fieldName: fieldName, re: re, } return fr, nil }) } func parseFilterGT(lex *lexer, fieldName string) (filter, error) { if fieldName == "" { return nil, fmt.Errorf("'>' and '>=' must be prefixed with the field name") } lex.nextToken() includeMinValue := false op := ">" if lex.isKeyword("=") { lex.nextToken() includeMinValue = true op = ">=" } minValue, fStr, err := parseFloat64(lex) if err != nil { return nil, fmt.Errorf("cannot parse number after '%s': %w", op, err) } if !includeMinValue { minValue = nextafter(minValue, inf) } fr := &filterRange{ fieldName: fieldName, minValue: minValue, maxValue: inf, stringRepr: op + fStr, } return fr, nil } func parseFilterLT(lex *lexer, fieldName string) (filter, error) { if fieldName == "" { return nil, fmt.Errorf("'<' and '<=' must be prefixed with the field name") } lex.nextToken() includeMaxValue := false op := "<" if lex.isKeyword("=") { lex.nextToken() includeMaxValue = true op = "<=" } maxValue, fStr, err := parseFloat64(lex) if err != nil { return nil, fmt.Errorf("cannot parse number after '%s': %w", op, err) } if !includeMaxValue { maxValue = nextafter(maxValue, -inf) } fr := &filterRange{ fieldName: fieldName, minValue: -inf, maxValue: maxValue, stringRepr: op + fStr, } return fr, nil } func parseFilterRange(lex *lexer, fieldName string) (filter, error) { funcName := lex.token lex.nextToken() // Parse minValue includeMinValue := false switch { case lex.isKeyword("("): includeMinValue = false case lex.isKeyword("["): includeMinValue = true default: phrase := funcName + getCompoundSuffix(lex, fieldName != "") return parseFilterForPhrase(lex, phrase, fieldName) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing args for %s()", funcName) } minValue, minValueStr, err := parseFloat64(lex) if err != nil { return nil, fmt.Errorf("cannot parse minValue in %s(): %w", funcName, err) } // Parse comma if !lex.isKeyword(",") { return nil, fmt.Errorf("unexpected token %q ater %q in %s(); want ','", lex.token, minValueStr, funcName) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing maxValue in %s()", funcName) } // Parse maxValue maxValue, maxValueStr, err := parseFloat64(lex) if err != nil { return nil, fmt.Errorf("cannot parse maxValue in %s(): %w", funcName, err) } includeMaxValue := false switch { case lex.isKeyword(")"): includeMaxValue = false case lex.isKeyword("]"): includeMaxValue = true default: return nil, fmt.Errorf("unexpected closing token %q in %s(); want ')' or ']'", lex.token, funcName) } lex.nextToken() stringRepr := "range" if includeMinValue { stringRepr += "[" } else { stringRepr += "(" minValue = nextafter(minValue, inf) } stringRepr += minValueStr + ", " + maxValueStr if includeMaxValue { stringRepr += "]" } else { stringRepr += ")" maxValue = nextafter(maxValue, -inf) } fr := &filterRange{ fieldName: fieldName, minValue: minValue, maxValue: maxValue, stringRepr: stringRepr, } return fr, nil } func parseFloat64(lex *lexer) (float64, string, error) { s, err := getCompoundToken(lex) if err != nil { return 0, "", fmt.Errorf("cannot parse float64: %w", err) } f, err := strconv.ParseFloat(s, 64) if err == nil { return f, s, nil } // Try parsing s as integer. // This handles 0x..., 0b... and 0... prefixes, alongside '_' delimiters. n, err := parseInt(s) if err == nil { return float64(n), s, nil } return 0, "", fmt.Errorf("cannot parse %q as float64: %w", lex.token, err) } func parseFuncArg(lex *lexer, fieldName string, callback func(args string) (filter, error)) (filter, error) { funcName := lex.token return parseFuncArgs(lex, fieldName, func(args []string) (filter, error) { if len(args) != 1 { return nil, fmt.Errorf("unexpected number of args for %s(); got %d; want 1", funcName, len(args)) } return callback(args[0]) }) } func parseFuncArgs(lex *lexer, fieldName string, callback func(args []string) (filter, error)) (filter, error) { funcName := lex.token lex.nextToken() if !lex.isKeyword("(") { phrase := funcName + getCompoundSuffix(lex, fieldName != "") return parseFilterForPhrase(lex, phrase, fieldName) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing args for %s()", funcName) } var args []string for !lex.isKeyword(")") { if lex.isKeyword(",") { return nil, fmt.Errorf("unexpected ',' - missing arg in %s()", funcName) } if lex.isKeyword("(") { return nil, fmt.Errorf("unexpected '(' - missing arg in %s()", funcName) } arg := getCompoundFuncArg(lex) args = append(args, arg) if lex.isKeyword(")") { break } if !lex.isKeyword(",") { return nil, fmt.Errorf("missing ',' after %q in %s()", arg, funcName) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing the next arg after %q in %s()", arg, funcName) } } lex.nextToken() return callback(args) } // startsWithYear returns true if s starts from YYYY func startsWithYear(s string) bool { if len(s) < 4 { return false } for i := 0; i < 4; i++ { c := s[i] if c < '0' || c > '9' { return false } } s = s[4:] if len(s) == 0 { return true } c := s[0] return c == '-' || c == '+' || c == 'Z' || c == 'z' } func parseFilterTimeWithOffset(lex *lexer) (*filterTime, error) { ft, err := parseFilterTime(lex) if err != nil { return nil, err } if !lex.isKeyword("offset") { return ft, nil } lex.nextToken() s, err := getCompoundToken(lex) if err != nil { return nil, fmt.Errorf("cannot parse offset in _time filter: %w", err) } d, ok := tryParseDuration(s) if !ok { return nil, fmt.Errorf("cannot parse offset %q for _time filter %s", s, ft) } offset := int64(d) ft.minTimestamp -= offset ft.maxTimestamp -= offset ft.stringRepr += " offset " + s return ft, nil } func parseFilterTime(lex *lexer) (*filterTime, error) { startTimeInclude := false switch { case lex.isKeyword("["): startTimeInclude = true case lex.isKeyword("("): startTimeInclude = false default: s, err := getCompoundToken(lex) if err != nil { return nil, fmt.Errorf("cannot parse _time filter: %w", err) } sLower := strings.ToLower(s) if sLower == "now" || startsWithYear(s) { // Parse '_time:YYYY-MM-DD', which transforms to '_time:[YYYY-MM-DD, YYYY-MM-DD+1)' t, err := promutils.ParseTimeAt(s, float64(lex.currentTimestamp)/1e9) if err != nil { return nil, fmt.Errorf("cannot parse _time filter: %w", err) } startTime := int64(t * 1e9) endTime := getMatchingEndTime(startTime, s) ft := &filterTime{ minTimestamp: startTime, maxTimestamp: endTime, stringRepr: s, } return ft, nil } // Parse _time:duration, which transforms to '_time:(now-duration, now]' d, ok := tryParseDuration(s) if !ok { return nil, fmt.Errorf("cannot parse duration %q in _time filter", s) } if d < 0 { d = -d } ft := &filterTime{ minTimestamp: lex.currentTimestamp - int64(d), maxTimestamp: lex.currentTimestamp, stringRepr: s, } return ft, nil } if !lex.mustNextToken() { return nil, fmt.Errorf("missing start time in _time filter") } // Parse start time startTime, startTimeString, err := parseTime(lex) if err != nil { return nil, fmt.Errorf("cannot parse start time in _time filter: %w", err) } if !lex.isKeyword(",") { return nil, fmt.Errorf("unexpected token after start time in _time filter: %q; want ','", lex.token) } if !lex.mustNextToken() { return nil, fmt.Errorf("missing end time in _time filter") } // Parse end time endTime, endTimeString, err := parseTime(lex) if err != nil { return nil, fmt.Errorf("cannot parse end time in _time filter: %w", err) } endTimeInclude := false switch { case lex.isKeyword("]"): endTimeInclude = true case lex.isKeyword(")"): endTimeInclude = false default: return nil, fmt.Errorf("_time filter ends with unexpected token %q; it must end with ']' or ')'", lex.token) } lex.nextToken() stringRepr := "" if startTimeInclude { stringRepr += "[" } else { stringRepr += "(" startTime++ } stringRepr += startTimeString + "," + endTimeString if endTimeInclude { stringRepr += "]" endTime = getMatchingEndTime(endTime, endTimeString) } else { stringRepr += ")" endTime-- } ft := &filterTime{ minTimestamp: startTime, maxTimestamp: endTime, stringRepr: stringRepr, } return ft, nil } func getMatchingEndTime(startTime int64, stringRepr string) int64 { tStart := time.Unix(0, startTime).UTC() tEnd := tStart timeStr := stripTimezoneSuffix(stringRepr) switch { case len(timeStr) == len("YYYY"): y, m, d := tStart.Date() nsec := startTime % (24 * 3600 * 1e9) tEnd = time.Date(y+1, m, d, 0, 0, int(nsec/1e9), int(nsec%1e9), time.UTC) case len(timeStr) == len("YYYY-MM") && timeStr[len("YYYY")] == '-': y, m, d := tStart.Date() nsec := startTime % (24 * 3600 * 1e9) if d != 1 { d = 0 m++ } tEnd = time.Date(y, m+1, d, 0, 0, int(nsec/1e9), int(nsec%1e9), time.UTC) case len(timeStr) == len("YYYY-MM-DD") && timeStr[len("YYYY")] == '-': tEnd = tStart.Add(24 * time.Hour) case len(timeStr) == len("YYYY-MM-DDThh") && timeStr[len("YYYY")] == '-': tEnd = tStart.Add(time.Hour) case len(timeStr) == len("YYYY-MM-DDThh:mm") && timeStr[len("YYYY")] == '-': tEnd = tStart.Add(time.Minute) case len(timeStr) == len("YYYY-MM-DDThh:mm:ss") && timeStr[len("YYYY")] == '-': tEnd = tStart.Add(time.Second) default: tEnd = tStart.Add(time.Nanosecond) } return tEnd.UnixNano() - 1 } func stripTimezoneSuffix(s string) string { if strings.HasSuffix(s, "Z") { return s[:len(s)-1] } if len(s) < 6 { return s } tz := s[len(s)-6:] if tz[0] != '-' && tz[0] != '+' { return s } if tz[3] != ':' { return s } return s[:len(s)-len(tz)] } func parseFilterStream(lex *lexer) (*filterStream, error) { sf, err := parseStreamFilter(lex) if err != nil { return nil, err } fs := &filterStream{ f: sf, } return fs, nil } func parseTime(lex *lexer) (int64, string, error) { s, err := getCompoundToken(lex) if err != nil { return 0, "", err } t, err := promutils.ParseTimeAt(s, float64(lex.currentTimestamp)/1e9) if err != nil { return 0, "", err } return int64(t * 1e9), s, nil } func quoteTokenIfNeeded(s string) string { if !needQuoteToken(s) { return s } return strconv.Quote(s) } func needQuoteToken(s string) bool { sLower := strings.ToLower(s) if _, ok := reservedKeywords[sLower]; ok { return true } for _, r := range s { if !isTokenRune(r) && r != '.' && r != '-' { return true } } return false } var reservedKeywords = func() map[string]struct{} { kws := []string{ // An empty keyword means end of parsed string "", // boolean operator tokens for 'foo and bar or baz not xxx' "and", "or", "not", "!", // synonym for "not" // parens for '(foo or bar) and baz' "(", ")", // stream filter tokens for '_stream:{foo=~"bar", baz="a"}' "{", "}", "=", "!=", "=~", "!~", ",", // delimiter between query parts: // 'foo and bar | extract "<*> foo