--- sort: 3 title: Scheduler weight: 3 menu: docs: parent: "vmanomaly-components" weight: 3 aliases: - /anomaly-detection/components/scheduler.html --- # Scheduler Scheduler defines how often to run and make inferences, as well as what timerange to use to train the model. Is specified in `scheduler` section of a config for VictoriaMetrics Anomaly Detection. > **Note: Starting from [v1.11.0](/anomaly-detection/changelog#v1110) scheduler section in config supports multiple schedulers via aliasing.
Also, `vmanomaly` expects scheduler section to be named `schedulers`. Using old (flat) format with `scheduler` key is deprecated and will be removed in future versions.** ```yaml schedulers: scheduler_periodic_1m: # class: "scheduler.periodic.PeriodicScheduler" infer_every: "1m" fit_every: "2m" fit_window: "3h" scheduler_periodic_5m: # class: "scheduler.periodic.PeriodicScheduler" infer_every: "5m" fit_every: "10m" fit_window: "3h" ... ``` Old-style configs (< [1.11.0](/anomaly-detection/changelog#v1110)) ```yaml scheduler: # class: "scheduler.periodic.PeriodicScheduler" infer_every: "1m" fit_every: "2m" fit_window: "3h" ... ``` will be **implicitly** converted to ```yaml schedulers: default_scheduler: # default scheduler alias, backward compatibility # class: "scheduler.periodic.PeriodicScheduler" infer_every: "1m" fit_every: "2m" fit_window: "3h" ... ``` ## Parameters `class`: str, default=`"scheduler.periodic.PeriodicScheduler"`, options={`"scheduler.periodic.PeriodicScheduler"`, `"scheduler.oneoff.OneoffScheduler"`, `"scheduler.backtesting.BacktestingScheduler"`} - `"scheduler.periodic.PeriodicScheduler"`: periodically runs the models on new data. Useful for consecutive re-trainings to counter [data drift](https://www.datacamp.com/tutorial/understanding-data-drift-model-drift) and model degradation over time. - `"scheduler.oneoff.OneoffScheduler"`: runs the process once and exits. Useful for testing. - `"scheduler.backtesting.BacktestingScheduler"`: imitates consecutive backtesting runs of OneoffScheduler. Runs the process once and exits. Use to get more granular control over testing on historical data. **Depending on selected class, different parameters should be used** ## Periodic scheduler ### Parameters For periodic scheduler parameters are defined as differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. Examples: `"50s"`, `"4m"`, `"3h"`, `"2d"`, `"1w"`.
Time granularity
s seconds
m minutes
h hours
d days
w weeks
Parameter Type Example Description
fit_window str "14d" What time range to use for training the models. Must be at least 1 second.
infer_every str "1m" How often a model will write its conclusions on newly added data. Must be at least 1 second.
fit_every str, Optional "1h" How often to completely retrain the models. If missing value of infer_every is used and retrain on every inference run.
### Periodic scheduler config example ```yaml scheduler: class: "scheduler.periodic.PeriodicScheduler" fit_window: "14d" infer_every: "1m" fit_every: "1h" ``` This part of the config means that `vmanomaly` will calculate the time window of the previous 14 days and use it to train a model. Every hour model will be retrained again on 14 days’ data, which will include + 1 hour of new data. The time window is strictly the same 14 days and doesn't extend for the next retrains. Every minute `vmanomaly` will produce model inferences for newly added data points by using the model that is kept in memory at that time. ## Oneoff scheduler ### Parameters For Oneoff scheduler timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are: * Z (UTC) * ±HH:MM * ±HHMM * ±HH If a time zone is omitted, a timezone-naive datetime is used. ### Defining fitting timeframe
Format Parameter Type Example Description
ISO 8601 fit_start_iso str "2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01" Start datetime to use for training a model. ISO string or UNIX time in seconds.
UNIX time fit_start_s float 1648771200
ISO 8601 fit_end_iso str "2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01" End datetime to use for training a model. Must be greater than fit_start_*. ISO string or UNIX time in seconds.
UNIX time fit_end_s float 1649548800
### Defining inference timeframe
Format Parameter Type Example Description
ISO 8601 infer_start_iso str "2022-04-11T00:00:00Z", "2022-04-11T00:00:00+01:00", "2022-04-11T00:00:00+0100", "2022-04-11T00:00:00+01" Start datetime to use for a model inference. ISO string or UNIX time in seconds.
UNIX time infer_start_s float 1649635200
ISO 8601 infer_end_iso str "2022-04-14T00:00:00Z", "2022-04-14T00:00:00+01:00", "2022-04-14T00:00:00+0100", "2022-04-14T00:00:00+01" End datetime to use for a model inference. Must be greater than infer_start_*. ISO string or UNIX time in seconds.
UNIX time infer_end_s float 1649894400
### ISO format scheduler config example ```yaml scheduler: class: "scheduler.oneoff.OneoffScheduler" fit_start_iso: "2022-04-01T00:00:00Z" fit_end_iso: "2022-04-10T00:00:00Z" infer_start_iso: "2022-04-11T00:00:00Z" infer_end_iso: "2022-04-14T00:00:00Z" ``` ### UNIX time format scheduler config example ```yaml scheduler: class: "scheduler.oneoff.OneoffScheduler" fit_start_iso: 1648771200 fit_end_iso: 1649548800 infer_start_iso: 1649635200 infer_end_iso: 1649894400 ``` ## Backtesting scheduler ### Parameters As for [Oneoff scheduler](#oneoff-scheduler), timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are: * Z (UTC) * ±HH:MM * ±HHMM * ±HH If a time zone is omitted, a timezone-naive datetime is used. ### Defining overall timeframe This timeframe will be used for slicing on intervals `(fit_window, infer_window == fit_every)`, starting from the *latest available* time point, which is `to_*` and going back, until no full `fit_window + infer_window` interval exists within the provided timeframe.
Format Parameter Type Example Description
ISO 8601 from_iso str "2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01" Start datetime to use for backtesting.
UNIX time from_s float 1648771200
ISO 8601 to_iso str "2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01" End datetime to use for backtesting. Must be greater than from_start_*.
UNIX time to_s float 1649548800
### Defining training timeframe The same *explicit* logic as in [Periodic scheduler](#periodic-scheduler)
Format Parameter Type Example Description
ISO 8601 fit_window str "PT1M", "P1H" What time range to use for training the models. Must be at least 1 second.
Prometheus-compatible "1m", "1h"
### Defining inference timeframe In `BacktestingScheduler`, the inference window is *implicitly* defined as a period between 2 consecutive model `fit_every` runs. The *latest* inference window starts from `to_s` - `fit_every` and ends on the *latest available* time point, which is `to_s`. The previous periods for fit/infer are defined the same way, by shifting `fit_every` seconds backwards until we get the last full fit period of `fit_window` size, which start is >= `from_s`.
Format Parameter Type Example Description
ISO 8601 fit_every str "PT1M", "P1H" What time range to use previously trained model to infer on new data until next retrain happens.
Prometheus-compatible "1m", "1h"
### ISO format scheduler config example ```yaml scheduler: class: "scheduler.backtesting.BacktestingScheduler" from_start_iso: '2021-01-01T00:00:00Z' to_end_iso: '2021-01-14T00:00:00Z' fit_window: 'P14D' fit_every: 'PT1H' ``` ### UNIX time format scheduler config example ```yaml scheduler: class: "scheduler.backtesting.BacktestingScheduler" from_start_s: 167253120 to_end_s: 167443200 fit_window: '14d' fit_every: '1h' ```