package mergeset import ( "errors" "fmt" "io/ioutil" "os" "path/filepath" "sort" "strings" "sync" "sync/atomic" "time" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fs" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/memory" "github.com/VictoriaMetrics/VictoriaMetrics/lib/storagepacelimiter" "github.com/VictoriaMetrics/VictoriaMetrics/lib/syncwg" ) // These are global counters for cache requests and misses for parts // which were already merged into another parts. var ( historicalDataBlockCacheRequests uint64 historicalDataBlockCacheMisses uint64 historicalIndexBlockCacheRequests uint64 historicalIndexBlockCacheMisses uint64 ) // maxParts is the maximum number of parts in the table. // // This number may be reached when the insertion pace outreaches merger pace. const maxParts = 512 // Default number of parts to merge at once. // // This number has been obtained empirically - it gives the lowest possible overhead. // See appendPartsToMerge tests for details. const defaultPartsToMerge = 15 // The final number of parts to merge at once. // // It must be smaller than defaultPartsToMerge. // Lower value improves select performance at the cost of increased // write amplification. const finalPartsToMerge = 2 // maxItemsPerPart is the absolute maximum number of items per part. // // This number should be limited by the amount of time required to merge // such number of items. The required time shouldn't exceed a day. // // TODO: adjust this number using production stats. const maxItemsPerPart = 100e9 // maxItemsPerCachedPart is the maximum items per created part by the merge, // which must be cached in the OS page cache. // // Such parts are usually frequently accessed, so it is good to cache their // contents in OS page cache. func maxItemsPerCachedPart() uint64 { mem := memory.Remaining() // Production data shows that each item occupies ~4 bytes in the compressed part. // It is expected no more than defaultPartsToMerge/2 parts exist // in the OS page cache before they are merged into bigger part. // Halft of the remaining RAM must be left for lib/storage parts, // so the maxItems is calculated using the below code: maxItems := uint64(mem) / (4 * defaultPartsToMerge) if maxItems < 1e6 { maxItems = 1e6 } return maxItems } // The interval for flushing (converting) recent raw items into parts, // so they become visible to search. const rawItemsFlushInterval = time.Second // Table represents mergeset table. type Table struct { // Atomically updated counters must go first in the struct, so they are properly // aligned to 8 bytes on 32-bit architectures. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/212 activeMerges uint64 mergesCount uint64 itemsMerged uint64 assistedMerges uint64 mergeIdx uint64 path string flushCallback func() prepareBlock PrepareBlockCallback partsLock sync.Mutex parts []*partWrapper // rawItems contains recently added items that haven't been converted to parts yet. // // rawItems aren't used in search for performance reasons rawItems rawItemsShards snapshotLock sync.RWMutex flockF *os.File stopCh chan struct{} // Use syncwg instead of sync, since Add/Wait may be called from concurrent goroutines. partMergersWG syncwg.WaitGroup rawItemsFlusherWG sync.WaitGroup convertersWG sync.WaitGroup // Use syncwg instead of sync, since Add/Wait may be called from concurrent goroutines. rawItemsPendingFlushesWG syncwg.WaitGroup } type rawItemsShards struct { shardIdx uint32 // shards reduce lock contention when adding rows on multi-CPU systems. shards []rawItemsShard } // The number of shards for rawItems per table. // // Higher number of shards reduces CPU contention and increases the max bandwidth on multi-core systems. var rawItemsShardsPerTable = cgroup.AvailableCPUs() const maxBlocksPerShard = 512 func (riss *rawItemsShards) init() { riss.shards = make([]rawItemsShard, rawItemsShardsPerTable) } func (riss *rawItemsShards) addItems(tb *Table, items [][]byte) error { n := atomic.AddUint32(&riss.shardIdx, 1) shards := riss.shards idx := n % uint32(len(shards)) shard := &shards[idx] return shard.addItems(tb, items) } func (riss *rawItemsShards) Len() int { n := 0 for i := range riss.shards { n += riss.shards[i].Len() } return n } type rawItemsShard struct { mu sync.Mutex ibs []*inmemoryBlock lastFlushTime uint64 } func (ris *rawItemsShard) Len() int { ris.mu.Lock() n := 0 for _, ib := range ris.ibs { n += len(ib.items) } ris.mu.Unlock() return n } func (ris *rawItemsShard) addItems(tb *Table, items [][]byte) error { var err error var blocksToMerge []*inmemoryBlock ris.mu.Lock() ibs := ris.ibs if len(ibs) == 0 { ib := getInmemoryBlock() ibs = append(ibs, ib) ris.ibs = ibs } ib := ibs[len(ibs)-1] for _, item := range items { if !ib.Add(item) { ib = getInmemoryBlock() if !ib.Add(item) { putInmemoryBlock(ib) err = fmt.Errorf("cannot insert an item %q into an empty inmemoryBlock; it looks like the item is too large? len(item)=%d", item, len(item)) break } ibs = append(ibs, ib) ris.ibs = ibs } } if len(ibs) >= maxBlocksPerShard { blocksToMerge = ibs ris.ibs = make([]*inmemoryBlock, 0, maxBlocksPerShard) ris.lastFlushTime = fasttime.UnixTimestamp() } ris.mu.Unlock() if blocksToMerge == nil { // Fast path. return err } // Slow path: merge blocksToMerge. tb.mergeRawItemsBlocks(blocksToMerge) return err } type partWrapper struct { p *part mp *inmemoryPart refCount uint64 isInMerge bool } func (pw *partWrapper) incRef() { atomic.AddUint64(&pw.refCount, 1) } func (pw *partWrapper) decRef() { n := atomic.AddUint64(&pw.refCount, ^uint64(0)) if int64(n) < 0 { logger.Panicf("BUG: pw.refCount must be bigger than 0; got %d", int64(n)) } if n > 0 { return } if pw.mp != nil { putInmemoryPart(pw.mp) pw.mp = nil } pw.p.MustClose() pw.p = nil } // OpenTable opens a table on the given path. // // Optional flushCallback is called every time new data batch is flushed // to the underlying storage and becomes visible to search. // // Optional prepareBlock is called during merge before flushing the prepared block // to persistent storage. // // The table is created if it doesn't exist yet. func OpenTable(path string, flushCallback func(), prepareBlock PrepareBlockCallback) (*Table, error) { path = filepath.Clean(path) logger.Infof("opening table %q...", path) startTime := time.Now() // Create a directory for the table if it doesn't exist yet. if err := fs.MkdirAllIfNotExist(path); err != nil { return nil, fmt.Errorf("cannot create directory %q: %w", path, err) } // Protect from concurrent opens. flockF, err := fs.CreateFlockFile(path) if err != nil { return nil, err } // Open table parts. pws, err := openParts(path) if err != nil { return nil, fmt.Errorf("cannot open table parts at %q: %w", path, err) } tb := &Table{ path: path, flushCallback: flushCallback, prepareBlock: prepareBlock, parts: pws, mergeIdx: uint64(time.Now().UnixNano()), flockF: flockF, stopCh: make(chan struct{}), } tb.rawItems.init() tb.startPartMergers() tb.startRawItemsFlusher() var m TableMetrics tb.UpdateMetrics(&m) logger.Infof("table %q has been opened in %.3f seconds; partsCount: %d; blocksCount: %d, itemsCount: %d; sizeBytes: %d", path, time.Since(startTime).Seconds(), m.PartsCount, m.BlocksCount, m.ItemsCount, m.SizeBytes) tb.convertersWG.Add(1) go func() { tb.convertToV1280() tb.convertersWG.Done() }() return tb, nil } // MustClose closes the table. func (tb *Table) MustClose() { close(tb.stopCh) logger.Infof("waiting for raw items flusher to stop on %q...", tb.path) startTime := time.Now() tb.rawItemsFlusherWG.Wait() logger.Infof("raw items flusher stopped in %.3f seconds on %q", time.Since(startTime).Seconds(), tb.path) logger.Infof("waiting for converters to stop on %q...", tb.path) startTime = time.Now() tb.convertersWG.Wait() logger.Infof("converters stopped in %.3f seconds on %q", time.Since(startTime).Seconds(), tb.path) logger.Infof("waiting for part mergers to stop on %q...", tb.path) startTime = time.Now() tb.partMergersWG.Wait() logger.Infof("part mergers stopped in %.3f seconds on %q", time.Since(startTime).Seconds(), tb.path) logger.Infof("flushing inmemory parts to files on %q...", tb.path) startTime = time.Now() // Flush raw items the last time before exit. tb.flushRawItems(true) // Flush inmemory parts to disk. var pws []*partWrapper tb.partsLock.Lock() for _, pw := range tb.parts { if pw.mp == nil { continue } if pw.isInMerge { logger.Panicf("BUG: the inmemory part %s mustn't be in merge after stopping parts merger in %q", &pw.mp.ph, tb.path) } pw.isInMerge = true pws = append(pws, pw) } tb.partsLock.Unlock() if err := tb.mergePartsOptimal(pws, nil); err != nil { logger.Panicf("FATAL: cannot flush inmemory parts to files in %q: %s", tb.path, err) } logger.Infof("%d inmemory parts have been flushed to files in %.3f seconds on %q", len(pws), time.Since(startTime).Seconds(), tb.path) // Remove references to parts from the tb, so they may be eventually closed // after all the searches are done. tb.partsLock.Lock() parts := tb.parts tb.parts = nil tb.partsLock.Unlock() for _, pw := range parts { pw.decRef() } // Release flockF if err := tb.flockF.Close(); err != nil { logger.Panicf("FATAL:cannot close %q: %s", tb.flockF.Name(), err) } } // Path returns the path to tb on the filesystem. func (tb *Table) Path() string { return tb.path } // TableMetrics contains essential metrics for the Table. type TableMetrics struct { ActiveMerges uint64 MergesCount uint64 ItemsMerged uint64 AssistedMerges uint64 PendingItems uint64 PartsCount uint64 BlocksCount uint64 ItemsCount uint64 SizeBytes uint64 DataBlocksCacheSize uint64 DataBlocksCacheSizeBytes uint64 DataBlocksCacheRequests uint64 DataBlocksCacheMisses uint64 IndexBlocksCacheSize uint64 IndexBlocksCacheSizeBytes uint64 IndexBlocksCacheRequests uint64 IndexBlocksCacheMisses uint64 PartsRefCount uint64 } // UpdateMetrics updates m with metrics from tb. func (tb *Table) UpdateMetrics(m *TableMetrics) { m.ActiveMerges += atomic.LoadUint64(&tb.activeMerges) m.MergesCount += atomic.LoadUint64(&tb.mergesCount) m.ItemsMerged += atomic.LoadUint64(&tb.itemsMerged) m.AssistedMerges += atomic.LoadUint64(&tb.assistedMerges) m.PendingItems += uint64(tb.rawItems.Len()) tb.partsLock.Lock() m.PartsCount += uint64(len(tb.parts)) for _, pw := range tb.parts { p := pw.p m.BlocksCount += p.ph.blocksCount m.ItemsCount += p.ph.itemsCount m.SizeBytes += p.size m.DataBlocksCacheSize += p.ibCache.Len() m.DataBlocksCacheSizeBytes += p.ibCache.SizeBytes() m.DataBlocksCacheRequests += p.ibCache.Requests() m.DataBlocksCacheMisses += p.ibCache.Misses() m.IndexBlocksCacheSize += p.idxbCache.Len() m.IndexBlocksCacheSizeBytes += p.idxbCache.SizeBytes() m.IndexBlocksCacheRequests += p.idxbCache.Requests() m.IndexBlocksCacheMisses += p.idxbCache.Misses() m.PartsRefCount += atomic.LoadUint64(&pw.refCount) } tb.partsLock.Unlock() m.DataBlocksCacheRequests = atomic.LoadUint64(&historicalDataBlockCacheRequests) m.DataBlocksCacheMisses = atomic.LoadUint64(&historicalDataBlockCacheMisses) m.IndexBlocksCacheRequests = atomic.LoadUint64(&historicalIndexBlockCacheRequests) m.IndexBlocksCacheMisses = atomic.LoadUint64(&historicalIndexBlockCacheMisses) } // AddItems adds the given items to the tb. func (tb *Table) AddItems(items [][]byte) error { if err := tb.rawItems.addItems(tb, items); err != nil { return fmt.Errorf("cannot insert data into %q: %w", tb.path, err) } return nil } // getParts appends parts snapshot to dst and returns it. // // The appended parts must be released with putParts. func (tb *Table) getParts(dst []*partWrapper) []*partWrapper { tb.partsLock.Lock() for _, pw := range tb.parts { pw.incRef() } dst = append(dst, tb.parts...) tb.partsLock.Unlock() return dst } // putParts releases the given pws obtained via getParts. func (tb *Table) putParts(pws []*partWrapper) { for _, pw := range pws { pw.decRef() } } func (tb *Table) startRawItemsFlusher() { tb.rawItemsFlusherWG.Add(1) go func() { tb.rawItemsFlusher() tb.rawItemsFlusherWG.Done() }() } func (tb *Table) rawItemsFlusher() { ticker := time.NewTicker(rawItemsFlushInterval) defer ticker.Stop() for { select { case <-tb.stopCh: return case <-ticker.C: tb.flushRawItems(false) } } } const convertToV1280FileName = "converted-to-v1.28.0" func (tb *Table) convertToV1280() { // Convert tag->metricID rows into tag->metricIDs rows when upgrading to v1.28.0+. flagFilePath := tb.path + "/" + convertToV1280FileName if fs.IsPathExist(flagFilePath) { // The conversion has been already performed. return } getAllPartsForMerge := func() []*partWrapper { var pws []*partWrapper tb.partsLock.Lock() for _, pw := range tb.parts { if pw.isInMerge { continue } pw.isInMerge = true pws = append(pws, pw) } tb.partsLock.Unlock() return pws } pws := getAllPartsForMerge() if len(pws) > 0 { logger.Infof("started round 1 of background conversion of %q to v1.28.0 format; merge %d parts", tb.path, len(pws)) startTime := time.Now() if err := tb.mergePartsOptimal(pws, tb.stopCh); err != nil { logger.Errorf("failed round 1 of background conversion of %q to v1.28.0 format: %s", tb.path, err) return } logger.Infof("finished round 1 of background conversion of %q to v1.28.0 format in %.3f seconds", tb.path, time.Since(startTime).Seconds()) // The second round is needed in order to merge small blocks // with tag->metricIDs rows left after the first round. pws = getAllPartsForMerge() logger.Infof("started round 2 of background conversion of %q to v1.28.0 format; merge %d parts", tb.path, len(pws)) startTime = time.Now() if len(pws) > 0 { if err := tb.mergePartsOptimal(pws, tb.stopCh); err != nil { logger.Errorf("failed round 2 of background conversion of %q to v1.28.0 format: %s", tb.path, err) return } } logger.Infof("finished round 2 of background conversion of %q to v1.28.0 format in %.3f seconds", tb.path, time.Since(startTime).Seconds()) } if err := fs.WriteFileAtomically(flagFilePath, []byte("ok")); err != nil { logger.Panicf("FATAL: cannot create %q: %s", flagFilePath, err) } } func (tb *Table) mergePartsOptimal(pws []*partWrapper, stopCh <-chan struct{}) error { defer func() { // Remove isInMerge flag from pws. tb.partsLock.Lock() for _, pw := range pws { // Do not check for pws.isInMerge set to false, // since it may be set to false in mergeParts below. pw.isInMerge = false } tb.partsLock.Unlock() }() for len(pws) > defaultPartsToMerge { if err := tb.mergeParts(pws[:defaultPartsToMerge], stopCh, false); err != nil { return fmt.Errorf("cannot merge %d parts: %w", defaultPartsToMerge, err) } pws = pws[defaultPartsToMerge:] } if len(pws) == 0 { return nil } if err := tb.mergeParts(pws, stopCh, false); err != nil { return fmt.Errorf("cannot merge %d parts: %w", len(pws), err) } return nil } // DebugFlush flushes all the added items to the storage, // so they become visible to search. // // This function is only for debugging and testing. func (tb *Table) DebugFlush() { tb.flushRawItems(true) // Wait for background flushers to finish. tb.rawItemsPendingFlushesWG.Wait() } func (tb *Table) flushRawItems(isFinal bool) { tb.rawItems.flush(tb, isFinal) } func (riss *rawItemsShards) flush(tb *Table, isFinal bool) { tb.rawItemsPendingFlushesWG.Add(1) defer tb.rawItemsPendingFlushesWG.Done() var wg sync.WaitGroup wg.Add(len(riss.shards)) for i := range riss.shards { go func(ris *rawItemsShard) { ris.flush(tb, isFinal) wg.Done() }(&riss.shards[i]) } wg.Wait() } func (ris *rawItemsShard) flush(tb *Table, isFinal bool) { mustFlush := false currentTime := fasttime.UnixTimestamp() flushSeconds := int64(rawItemsFlushInterval.Seconds()) if flushSeconds <= 0 { flushSeconds = 1 } var blocksToMerge []*inmemoryBlock ris.mu.Lock() if isFinal || currentTime-ris.lastFlushTime > uint64(flushSeconds) { mustFlush = true blocksToMerge = ris.ibs ris.ibs = make([]*inmemoryBlock, 0, maxBlocksPerShard) ris.lastFlushTime = currentTime } ris.mu.Unlock() if mustFlush { tb.mergeRawItemsBlocks(blocksToMerge) } } func (tb *Table) mergeRawItemsBlocks(blocksToMerge []*inmemoryBlock) { tb.partMergersWG.Add(1) defer tb.partMergersWG.Done() pws := make([]*partWrapper, 0, (len(blocksToMerge)+defaultPartsToMerge-1)/defaultPartsToMerge) for len(blocksToMerge) > 0 { n := defaultPartsToMerge if n > len(blocksToMerge) { n = len(blocksToMerge) } pw := tb.mergeInmemoryBlocks(blocksToMerge[:n]) blocksToMerge = blocksToMerge[n:] if pw == nil { continue } pw.isInMerge = true pws = append(pws, pw) } if len(pws) > 0 { if err := tb.mergeParts(pws, nil, true); err != nil { logger.Panicf("FATAL: cannot merge raw parts: %s", err) } if tb.flushCallback != nil { tb.flushCallback() } } for { tb.partsLock.Lock() ok := len(tb.parts) <= maxParts tb.partsLock.Unlock() if ok { return } // The added part exceeds maxParts count. Assist with merging other parts. // // Prioritize assisted merges over searches. storagepacelimiter.Search.Inc() err := tb.mergeExistingParts(false) storagepacelimiter.Search.Dec() if err == nil { atomic.AddUint64(&tb.assistedMerges, 1) continue } if errors.Is(err, errNothingToMerge) || errors.Is(err, errForciblyStopped) { return } logger.Panicf("FATAL: cannot merge small parts: %s", err) } } func (tb *Table) mergeInmemoryBlocks(blocksToMerge []*inmemoryBlock) *partWrapper { // Convert blocksToMerge into inmemoryPart's mps := make([]*inmemoryPart, 0, len(blocksToMerge)) for _, ib := range blocksToMerge { if len(ib.items) == 0 { continue } mp := getInmemoryPart() mp.Init(ib) putInmemoryBlock(ib) mps = append(mps, mp) } if len(mps) == 0 { return nil } if len(mps) == 1 { // Nothing to merge. Just return a single inmemory part. mp := mps[0] p := mp.NewPart() return &partWrapper{ p: p, mp: mp, refCount: 1, } } defer func() { // Return source inmemoryParts to pool. for _, mp := range mps { putInmemoryPart(mp) } }() atomic.AddUint64(&tb.mergesCount, 1) atomic.AddUint64(&tb.activeMerges, 1) defer atomic.AddUint64(&tb.activeMerges, ^uint64(0)) // Prepare blockStreamReaders for source parts. bsrs := make([]*blockStreamReader, 0, len(mps)) for _, mp := range mps { bsr := getBlockStreamReader() bsr.InitFromInmemoryPart(mp) bsrs = append(bsrs, bsr) } // Prepare blockStreamWriter for destination part. bsw := getBlockStreamWriter() mpDst := getInmemoryPart() bsw.InitFromInmemoryPart(mpDst) // Merge parts. // The merge shouldn't be interrupted by stopCh, // since it may be final after stopCh is closed. err := mergeBlockStreams(&mpDst.ph, bsw, bsrs, tb.prepareBlock, nil, &tb.itemsMerged) if err != nil { logger.Panicf("FATAL: cannot merge inmemoryBlocks: %s", err) } putBlockStreamWriter(bsw) for _, bsr := range bsrs { putBlockStreamReader(bsr) } p := mpDst.NewPart() return &partWrapper{ p: p, mp: mpDst, refCount: 1, } } func (tb *Table) startPartMergers() { for i := 0; i < mergeWorkersCount; i++ { tb.partMergersWG.Add(1) go func() { if err := tb.partMerger(); err != nil { logger.Panicf("FATAL: unrecoverable error when merging parts in %q: %s", tb.path, err) } tb.partMergersWG.Done() }() } } func (tb *Table) mergeExistingParts(isFinal bool) error { maxItems := tb.maxOutPartItems() if maxItems > maxItemsPerPart { maxItems = maxItemsPerPart } tb.partsLock.Lock() pws := getPartsToMerge(tb.parts, maxItems, isFinal) tb.partsLock.Unlock() return tb.mergeParts(pws, tb.stopCh, false) } const ( minMergeSleepTime = time.Millisecond maxMergeSleepTime = time.Second ) func (tb *Table) partMerger() error { sleepTime := minMergeSleepTime var lastMergeTime uint64 isFinal := false t := time.NewTimer(sleepTime) for { err := tb.mergeExistingParts(isFinal) if err == nil { // Try merging additional parts. sleepTime = minMergeSleepTime lastMergeTime = fasttime.UnixTimestamp() isFinal = false continue } if errors.Is(err, errForciblyStopped) { // The merger has been stopped. return nil } if !errors.Is(err, errNothingToMerge) { return err } if fasttime.UnixTimestamp()-lastMergeTime > 30 { // We have free time for merging into bigger parts. // This should improve select performance. lastMergeTime = fasttime.UnixTimestamp() isFinal = true continue } // Nothing to merge. Sleep for a while and try again. sleepTime *= 2 if sleepTime > maxMergeSleepTime { sleepTime = maxMergeSleepTime } select { case <-tb.stopCh: return nil case <-t.C: t.Reset(sleepTime) } } } var errNothingToMerge = fmt.Errorf("nothing to merge") // mergeParts merges pws. // // Merging is immediately stopped if stopCh is closed. // // All the parts inside pws must have isInMerge field set to true. func (tb *Table) mergeParts(pws []*partWrapper, stopCh <-chan struct{}, isOuterParts bool) error { if len(pws) == 0 { // Nothing to merge. return errNothingToMerge } atomic.AddUint64(&tb.mergesCount, 1) atomic.AddUint64(&tb.activeMerges, 1) defer atomic.AddUint64(&tb.activeMerges, ^uint64(0)) startTime := time.Now() defer func() { // Remove isInMerge flag from pws. tb.partsLock.Lock() for _, pw := range pws { if !pw.isInMerge { logger.Panicf("BUG: missing isInMerge flag on the part %q", pw.p.path) } pw.isInMerge = false } tb.partsLock.Unlock() }() // Prepare blockStreamReaders for source parts. bsrs := make([]*blockStreamReader, 0, len(pws)) defer func() { for _, bsr := range bsrs { putBlockStreamReader(bsr) } }() for _, pw := range pws { bsr := getBlockStreamReader() if pw.mp != nil { if !isOuterParts { logger.Panicf("BUG: inmemory part must be always outer") } bsr.InitFromInmemoryPart(pw.mp) } else { if err := bsr.InitFromFilePart(pw.p.path); err != nil { return fmt.Errorf("cannot open source part for merging: %w", err) } } bsrs = append(bsrs, bsr) } outItemsCount := uint64(0) outBlocksCount := uint64(0) for _, pw := range pws { outItemsCount += pw.p.ph.itemsCount outBlocksCount += pw.p.ph.blocksCount } nocache := true if outItemsCount < maxItemsPerCachedPart() { // Cache small (i.e. recent) output parts in OS file cache, // since there is high chance they will be read soon. nocache = false } // Prepare blockStreamWriter for destination part. mergeIdx := tb.nextMergeIdx() tmpPartPath := fmt.Sprintf("%s/tmp/%016X", tb.path, mergeIdx) bsw := getBlockStreamWriter() compressLevel := getCompressLevelForPartItems(outItemsCount, outBlocksCount) if err := bsw.InitFromFilePart(tmpPartPath, nocache, compressLevel); err != nil { return fmt.Errorf("cannot create destination part %q: %w", tmpPartPath, err) } // Merge parts into a temporary location. var ph partHeader err := mergeBlockStreams(&ph, bsw, bsrs, tb.prepareBlock, stopCh, &tb.itemsMerged) putBlockStreamWriter(bsw) if err != nil { return fmt.Errorf("error when merging parts to %q: %w", tmpPartPath, err) } if err := ph.WriteMetadata(tmpPartPath); err != nil { return fmt.Errorf("cannot write metadata to destination part %q: %w", tmpPartPath, err) } // Close bsrs (aka source parts). for _, bsr := range bsrs { putBlockStreamReader(bsr) } bsrs = nil // Create a transaction for atomic deleting old parts and moving // new part to its destination place. var bb bytesutil.ByteBuffer for _, pw := range pws { if pw.mp == nil { fmt.Fprintf(&bb, "%s\n", pw.p.path) } } dstPartPath := ph.Path(tb.path, mergeIdx) fmt.Fprintf(&bb, "%s -> %s\n", tmpPartPath, dstPartPath) txnPath := fmt.Sprintf("%s/txn/%016X", tb.path, mergeIdx) if err := fs.WriteFileAtomically(txnPath, bb.B); err != nil { return fmt.Errorf("cannot create transaction file %q: %w", txnPath, err) } // Run the created transaction. if err := runTransaction(&tb.snapshotLock, tb.path, txnPath); err != nil { return fmt.Errorf("cannot execute transaction %q: %w", txnPath, err) } // Open the merged part. newP, err := openFilePart(dstPartPath) if err != nil { return fmt.Errorf("cannot open merged part %q: %w", dstPartPath, err) } newPSize := newP.size newPW := &partWrapper{ p: newP, refCount: 1, } // Atomically remove old parts and add new part. m := make(map[*partWrapper]bool, len(pws)) for _, pw := range pws { m[pw] = true } if len(m) != len(pws) { logger.Panicf("BUG: %d duplicate parts found in the merge of %d parts", len(pws)-len(m), len(pws)) } removedParts := 0 tb.partsLock.Lock() tb.parts, removedParts = removeParts(tb.parts, m) tb.parts = append(tb.parts, newPW) tb.partsLock.Unlock() if removedParts != len(m) { if !isOuterParts { logger.Panicf("BUG: unexpected number of parts removed; got %d; want %d", removedParts, len(m)) } if removedParts != 0 { logger.Panicf("BUG: removed non-zero outer parts: %d", removedParts) } } // Remove partition references from old parts. for _, pw := range pws { pw.decRef() } d := time.Since(startTime) if d > 10*time.Second { logger.Infof("merged %d items across %d blocks in %.3f seconds at %d items/sec to %q; sizeBytes: %d", outItemsCount, outBlocksCount, d.Seconds(), int(float64(outItemsCount)/d.Seconds()), dstPartPath, newPSize) } return nil } func getCompressLevelForPartItems(itemsCount, blocksCount uint64) int { // There is no need in using blocksCount here, since mergeset blocks are usually full. if itemsCount <= 1<<16 { // -5 is the minimum supported compression for zstd. // See https://github.com/facebook/zstd/releases/tag/v1.3.4 return -5 } if itemsCount <= 1<<17 { return -4 } if itemsCount <= 1<<18 { return -3 } if itemsCount <= 1<<19 { return -2 } if itemsCount <= 1<<20 { return -1 } if itemsCount <= 1<<22 { return 1 } if itemsCount <= 1<<25 { return 2 } if itemsCount <= 1<<28 { return 3 } return 4 } func (tb *Table) nextMergeIdx() uint64 { return atomic.AddUint64(&tb.mergeIdx, 1) } var ( maxOutPartItemsLock sync.Mutex maxOutPartItemsDeadline uint64 lastMaxOutPartItems uint64 ) func (tb *Table) maxOutPartItems() uint64 { maxOutPartItemsLock.Lock() if maxOutPartItemsDeadline < fasttime.UnixTimestamp() { lastMaxOutPartItems = tb.maxOutPartItemsSlow() maxOutPartItemsDeadline = fasttime.UnixTimestamp() + 2 } n := lastMaxOutPartItems maxOutPartItemsLock.Unlock() return n } func (tb *Table) maxOutPartItemsSlow() uint64 { freeSpace := fs.MustGetFreeSpace(tb.path) // Calculate the maximum number of items in the output merge part // by dividing the freeSpace by 4 and by the number of concurrent // mergeWorkersCount. // This assumes each item is compressed into 4 bytes. return freeSpace / uint64(mergeWorkersCount) / 4 } var mergeWorkersCount = cgroup.AvailableCPUs() func openParts(path string) ([]*partWrapper, error) { // The path can be missing after restoring from backup, so create it if needed. if err := fs.MkdirAllIfNotExist(path); err != nil { return nil, err } d, err := os.Open(path) if err != nil { return nil, fmt.Errorf("cannot open difrectory: %w", err) } defer fs.MustClose(d) // Run remaining transactions and cleanup /txn and /tmp directories. // Snapshots cannot be created yet, so use fakeSnapshotLock. var fakeSnapshotLock sync.RWMutex if err := runTransactions(&fakeSnapshotLock, path); err != nil { return nil, fmt.Errorf("cannot run transactions: %w", err) } txnDir := path + "/txn" fs.MustRemoveAll(txnDir) if err := fs.MkdirAllFailIfExist(txnDir); err != nil { return nil, fmt.Errorf("cannot create %q: %w", txnDir, err) } tmpDir := path + "/tmp" fs.MustRemoveAll(tmpDir) if err := fs.MkdirAllFailIfExist(tmpDir); err != nil { return nil, fmt.Errorf("cannot create %q: %w", tmpDir, err) } fs.MustSyncPath(path) // Open parts. fis, err := d.Readdir(-1) if err != nil { return nil, fmt.Errorf("cannot read directory: %w", err) } var pws []*partWrapper for _, fi := range fis { if !fs.IsDirOrSymlink(fi) { // Skip non-directories. continue } fn := fi.Name() if isSpecialDir(fn) { // Skip special dirs. continue } partPath := path + "/" + fn if fs.IsEmptyDir(partPath) { // Remove empty directory, which can be left after unclean shutdown on NFS. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1142 fs.MustRemoveAll(partPath) continue } p, err := openFilePart(partPath) if err != nil { mustCloseParts(pws) return nil, fmt.Errorf("cannot open part %q: %w", partPath, err) } pw := &partWrapper{ p: p, refCount: 1, } pws = append(pws, pw) } return pws, nil } func mustCloseParts(pws []*partWrapper) { for _, pw := range pws { if pw.refCount != 1 { logger.Panicf("BUG: unexpected refCount when closing part %q: %d; want 1", pw.p.path, pw.refCount) } pw.p.MustClose() } } // CreateSnapshotAt creates tb snapshot in the given dstDir. // // Snapshot is created using linux hard links, so it is usually created // very quickly. func (tb *Table) CreateSnapshotAt(dstDir string) error { logger.Infof("creating Table snapshot of %q...", tb.path) startTime := time.Now() var err error srcDir := tb.path srcDir, err = filepath.Abs(srcDir) if err != nil { return fmt.Errorf("cannot obtain absolute dir for %q: %w", srcDir, err) } dstDir, err = filepath.Abs(dstDir) if err != nil { return fmt.Errorf("cannot obtain absolute dir for %q: %w", dstDir, err) } if strings.HasPrefix(dstDir, srcDir+"/") { return fmt.Errorf("cannot create snapshot %q inside the data dir %q", dstDir, srcDir) } // Flush inmemory items to disk. tb.flushRawItems(true) // The snapshot must be created under the lock in order to prevent from // concurrent modifications via runTransaction. tb.snapshotLock.Lock() defer tb.snapshotLock.Unlock() if err := fs.MkdirAllFailIfExist(dstDir); err != nil { return fmt.Errorf("cannot create snapshot dir %q: %w", dstDir, err) } d, err := os.Open(srcDir) if err != nil { return fmt.Errorf("cannot open difrectory: %w", err) } defer fs.MustClose(d) fis, err := d.Readdir(-1) if err != nil { return fmt.Errorf("cannot read directory: %w", err) } for _, fi := range fis { fn := fi.Name() if !fs.IsDirOrSymlink(fi) { switch fn { case convertToV1280FileName: srcPath := srcDir + "/" + fn dstPath := dstDir + "/" + fn if err := os.Link(srcPath, dstPath); err != nil { return fmt.Errorf("cannot hard link from %q to %q: %w", srcPath, dstPath, err) } default: // Skip other non-directories. } continue } if isSpecialDir(fn) { // Skip special dirs. continue } srcPartPath := srcDir + "/" + fn dstPartPath := dstDir + "/" + fn if err := fs.HardLinkFiles(srcPartPath, dstPartPath); err != nil { return fmt.Errorf("cannot create hard links from %q to %q: %w", srcPartPath, dstPartPath, err) } } fs.MustSyncPath(dstDir) parentDir := filepath.Dir(dstDir) fs.MustSyncPath(parentDir) logger.Infof("created Table snapshot of %q at %q in %.3f seconds", srcDir, dstDir, time.Since(startTime).Seconds()) return nil } func runTransactions(txnLock *sync.RWMutex, path string) error { // Wait until all the previous pending transaction deletions are finished. pendingTxnDeletionsWG.Wait() // Make sure all the current transaction deletions are finished before exiting. defer pendingTxnDeletionsWG.Wait() txnDir := path + "/txn" d, err := os.Open(txnDir) if err != nil { if os.IsNotExist(err) { return nil } return fmt.Errorf("cannot open %q: %w", txnDir, err) } defer fs.MustClose(d) fis, err := d.Readdir(-1) if err != nil { return fmt.Errorf("cannot read directory %q: %w", d.Name(), err) } // Sort transaction files by id, since transactions must be ordered. sort.Slice(fis, func(i, j int) bool { return fis[i].Name() < fis[j].Name() }) for _, fi := range fis { fn := fi.Name() if fs.IsTemporaryFileName(fn) { // Skip temporary files, which could be left after unclean shutdown. continue } txnPath := txnDir + "/" + fn if err := runTransaction(txnLock, path, txnPath); err != nil { return fmt.Errorf("cannot run transaction from %q: %w", txnPath, err) } } return nil } func runTransaction(txnLock *sync.RWMutex, pathPrefix, txnPath string) error { // The transaction must run under read lock in order to provide // consistent snapshots with Table.CreateSnapshot(). txnLock.RLock() defer txnLock.RUnlock() data, err := ioutil.ReadFile(txnPath) if err != nil { return fmt.Errorf("cannot read transaction file: %w", err) } if len(data) > 0 && data[len(data)-1] == '\n' { data = data[:len(data)-1] } paths := strings.Split(string(data), "\n") if len(paths) == 0 { return fmt.Errorf("empty transaction") } rmPaths := paths[:len(paths)-1] mvPaths := strings.Split(paths[len(paths)-1], " -> ") if len(mvPaths) != 2 { return fmt.Errorf("invalid last line in the transaction file: got %q; must contain `srcPath -> dstPath`", paths[len(paths)-1]) } // Remove old paths. It is OK if certain paths don't exist. var removeWG sync.WaitGroup for _, path := range rmPaths { path, err := validatePath(pathPrefix, path) if err != nil { return fmt.Errorf("invalid path to remove: %w", err) } removeWG.Add(1) fs.MustRemoveAllWithDoneCallback(path, removeWG.Done) } // Move the new part to new directory. srcPath := mvPaths[0] dstPath := mvPaths[1] srcPath, err = validatePath(pathPrefix, srcPath) if err != nil { return fmt.Errorf("invalid source path to rename: %w", err) } dstPath, err = validatePath(pathPrefix, dstPath) if err != nil { return fmt.Errorf("invalid destination path to rename: %w", err) } if fs.IsPathExist(srcPath) { if err := os.Rename(srcPath, dstPath); err != nil { return fmt.Errorf("cannot rename %q to %q: %w", srcPath, dstPath, err) } } else if !fs.IsPathExist(dstPath) { // Emit info message for the expected condition after unclean shutdown on NFS disk. // The dstPath part may be missing because it could be already merged into bigger part // while old source parts for the current txn weren't still deleted due to NFS locks. logger.Infof("cannot find both source and destination paths: %q -> %q; this may be the case after unclean shutdown (OOM, `kill -9`, hard reset) on NFS disk", srcPath, dstPath) } // Flush pathPrefix directory metadata to the underying storage. fs.MustSyncPath(pathPrefix) pendingTxnDeletionsWG.Add(1) go func() { defer pendingTxnDeletionsWG.Done() // Remove the transaction file only after all the source paths are deleted. // This is required for NFS mounts. See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/61 . removeWG.Wait() if err := os.Remove(txnPath); err != nil { logger.Errorf("cannot remove transaction file %q: %s", txnPath, err) } }() return nil } var pendingTxnDeletionsWG syncwg.WaitGroup func validatePath(pathPrefix, path string) (string, error) { var err error pathPrefix, err = filepath.Abs(pathPrefix) if err != nil { return path, fmt.Errorf("cannot determine absolute path for pathPrefix=%q: %w", pathPrefix, err) } path, err = filepath.Abs(path) if err != nil { return path, fmt.Errorf("cannot determine absolute path for %q: %w", path, err) } if !strings.HasPrefix(path, pathPrefix+"/") { return path, fmt.Errorf("invalid path %q; must start with %q", path, pathPrefix+"/") } return path, nil } // getPartsToMerge returns optimal parts to merge from pws. // // if isFinal is set, then merge harder. // // The returned parts will contain less than maxItems items. func getPartsToMerge(pws []*partWrapper, maxItems uint64, isFinal bool) []*partWrapper { pwsRemaining := make([]*partWrapper, 0, len(pws)) for _, pw := range pws { if !pw.isInMerge { pwsRemaining = append(pwsRemaining, pw) } } maxPartsToMerge := defaultPartsToMerge var dst []*partWrapper if isFinal { for len(dst) == 0 && maxPartsToMerge >= finalPartsToMerge { dst = appendPartsToMerge(dst[:0], pwsRemaining, maxPartsToMerge, maxItems) maxPartsToMerge-- } } else { dst = appendPartsToMerge(dst[:0], pwsRemaining, maxPartsToMerge, maxItems) } for _, pw := range dst { if pw.isInMerge { logger.Panicf("BUG: partWrapper.isInMerge is already set") } pw.isInMerge = true } return dst } // appendPartsToMerge finds optimal parts to merge from src, appends // them to dst and returns the result. func appendPartsToMerge(dst, src []*partWrapper, maxPartsToMerge int, maxItems uint64) []*partWrapper { if len(src) < 2 { // There is no need in merging zero or one part :) return dst } if maxPartsToMerge < 2 { logger.Panicf("BUG: maxPartsToMerge cannot be smaller than 2; got %d", maxPartsToMerge) } // Filter out too big parts. // This should reduce N for O(n^2) algorithm below. maxInPartItems := maxItems / 2 tmp := make([]*partWrapper, 0, len(src)) for _, pw := range src { if pw.p.ph.itemsCount > maxInPartItems { continue } tmp = append(tmp, pw) } src = tmp // Sort src parts by itemsCount. sort.Slice(src, func(i, j int) bool { return src[i].p.ph.itemsCount < src[j].p.ph.itemsCount }) minSrcParts := (maxPartsToMerge + 1) / 2 if minSrcParts < 2 { minSrcParts = 2 } maxSrcParts := maxPartsToMerge if len(src) < maxSrcParts { maxSrcParts = len(src) } // Exhaustive search for parts giving the lowest write amplification when merged. var pws []*partWrapper maxM := float64(0) for i := minSrcParts; i <= maxSrcParts; i++ { for j := 0; j <= len(src)-i; j++ { a := src[j : j+i] if a[0].p.ph.itemsCount*uint64(len(a)) < a[len(a)-1].p.ph.itemsCount { // Do not merge parts with too big difference in items count, // since this results in unbalanced merges. continue } itemsSum := uint64(0) for _, pw := range a { itemsSum += pw.p.ph.itemsCount } if itemsSum > maxItems { // There is no sense in checking the remaining bigger parts. break } m := float64(itemsSum) / float64(a[len(a)-1].p.ph.itemsCount) if m < maxM { continue } maxM = m pws = a } } minM := float64(maxPartsToMerge) / 2 if minM < 1.7 { minM = 1.7 } if maxM < minM { // There is no sense in merging parts with too small m. return dst } return append(dst, pws...) } func removeParts(pws []*partWrapper, partsToRemove map[*partWrapper]bool) ([]*partWrapper, int) { removedParts := 0 dst := pws[:0] for _, pw := range pws { if !partsToRemove[pw] { dst = append(dst, pw) continue } atomic.AddUint64(&historicalDataBlockCacheRequests, pw.p.ibCache.Requests()) atomic.AddUint64(&historicalDataBlockCacheMisses, pw.p.ibCache.Misses()) atomic.AddUint64(&historicalIndexBlockCacheRequests, pw.p.idxbCache.Requests()) atomic.AddUint64(&historicalIndexBlockCacheMisses, pw.p.idxbCache.Misses()) removedParts++ } return dst, removedParts } func isSpecialDir(name string) bool { // Snapshots and cache dirs aren't used anymore. // Keep them here for backwards compatibility. return name == "tmp" || name == "txn" || name == "snapshots" || name == "cache" }