VictoriaMetrics/lib/protoparser/influx/stream/streamparser.go
2023-02-13 09:58:52 -08:00

278 lines
6.6 KiB
Go

package stream
import (
"bufio"
"flag"
"fmt"
"io"
"sync"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/protoparser/common"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/protoparser/influx"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/writeconcurrencylimiter"
"github.com/VictoriaMetrics/metrics"
)
var (
maxLineSize = flagutil.NewBytes("influx.maxLineSize", 256*1024, "The maximum size in bytes for a single InfluxDB line during parsing")
trimTimestamp = flag.Duration("influxTrimTimestamp", time.Millisecond, "Trim timestamps for InfluxDB line protocol data to this duration. "+
"Minimum practical duration is 1ms. Higher duration (i.e. 1s) may be used for reducing disk space usage for timestamp data")
)
// Parse parses r with the given args and calls callback for the parsed rows.
//
// The callback can be called concurrently multiple times for streamed data from r.
//
// callback shouldn't hold rows after returning.
func Parse(r io.Reader, isGzipped bool, precision, db string, callback func(db string, rows []influx.Row) error) error {
wcr := writeconcurrencylimiter.GetReader(r)
defer writeconcurrencylimiter.PutReader(wcr)
r = wcr
if isGzipped {
zr, err := common.GetGzipReader(r)
if err != nil {
return fmt.Errorf("cannot read gzipped influx line protocol data: %w", err)
}
defer common.PutGzipReader(zr)
r = zr
}
tsMultiplier := int64(0)
switch precision {
case "ns":
tsMultiplier = 1e6
case "u", "us", "µ":
tsMultiplier = 1e3
case "ms":
tsMultiplier = 1
case "s":
tsMultiplier = -1e3
case "m":
tsMultiplier = -1e3 * 60
case "h":
tsMultiplier = -1e3 * 3600
}
ctx := getStreamContext(r)
defer putStreamContext(ctx)
for ctx.Read() {
uw := getUnmarshalWork()
uw.ctx = ctx
uw.callback = callback
uw.db = db
uw.tsMultiplier = tsMultiplier
uw.reqBuf, ctx.reqBuf = ctx.reqBuf, uw.reqBuf
ctx.wg.Add(1)
common.ScheduleUnmarshalWork(uw)
wcr.DecConcurrency()
}
ctx.wg.Wait()
if err := ctx.Error(); err != nil {
return err
}
return ctx.callbackErr
}
func (ctx *streamContext) Read() bool {
readCalls.Inc()
if ctx.err != nil || ctx.hasCallbackError() {
return false
}
ctx.reqBuf, ctx.tailBuf, ctx.err = common.ReadLinesBlockExt(ctx.br, ctx.reqBuf, ctx.tailBuf, maxLineSize.IntN())
if ctx.err != nil {
if ctx.err != io.EOF {
readErrors.Inc()
ctx.err = fmt.Errorf("cannot read influx line protocol data: %w", ctx.err)
}
return false
}
return true
}
var (
readCalls = metrics.NewCounter(`vm_protoparser_read_calls_total{type="influx"}`)
readErrors = metrics.NewCounter(`vm_protoparser_read_errors_total{type="influx"}`)
rowsRead = metrics.NewCounter(`vm_protoparser_rows_read_total{type="influx"}`)
)
type streamContext struct {
br *bufio.Reader
reqBuf []byte
tailBuf []byte
err error
wg sync.WaitGroup
callbackErrLock sync.Mutex
callbackErr error
}
func (ctx *streamContext) Error() error {
if ctx.err == io.EOF {
return nil
}
return ctx.err
}
func (ctx *streamContext) hasCallbackError() bool {
ctx.callbackErrLock.Lock()
ok := ctx.callbackErr != nil
ctx.callbackErrLock.Unlock()
return ok
}
func (ctx *streamContext) reset() {
ctx.br.Reset(nil)
ctx.reqBuf = ctx.reqBuf[:0]
ctx.tailBuf = ctx.tailBuf[:0]
ctx.err = nil
ctx.callbackErr = nil
}
func getStreamContext(r io.Reader) *streamContext {
select {
case ctx := <-streamContextPoolCh:
ctx.br.Reset(r)
return ctx
default:
if v := streamContextPool.Get(); v != nil {
ctx := v.(*streamContext)
ctx.br.Reset(r)
return ctx
}
return &streamContext{
br: bufio.NewReaderSize(r, 64*1024),
}
}
}
func putStreamContext(ctx *streamContext) {
ctx.reset()
select {
case streamContextPoolCh <- ctx:
default:
streamContextPool.Put(ctx)
}
}
var streamContextPool sync.Pool
var streamContextPoolCh = make(chan *streamContext, cgroup.AvailableCPUs())
type unmarshalWork struct {
rows influx.Rows
ctx *streamContext
callback func(db string, rows []influx.Row) error
db string
tsMultiplier int64
reqBuf []byte
}
func (uw *unmarshalWork) reset() {
uw.rows.Reset()
uw.ctx = nil
uw.callback = nil
uw.db = ""
uw.tsMultiplier = 0
uw.reqBuf = uw.reqBuf[:0]
}
func (uw *unmarshalWork) runCallback(rows []influx.Row) {
ctx := uw.ctx
if err := uw.callback(uw.db, rows); err != nil {
ctx.callbackErrLock.Lock()
if ctx.callbackErr == nil {
ctx.callbackErr = fmt.Errorf("error when processing imported data: %w", err)
}
ctx.callbackErrLock.Unlock()
}
ctx.wg.Done()
}
// Unmarshal implements common.UnmarshalWork
func (uw *unmarshalWork) Unmarshal() {
uw.rows.Unmarshal(bytesutil.ToUnsafeString(uw.reqBuf))
rows := uw.rows.Rows
rowsRead.Add(len(rows))
// Adjust timestamps according to uw.tsMultiplier
currentTs := time.Now().UnixNano() / 1e6
tsMultiplier := uw.tsMultiplier
if tsMultiplier == 0 {
// Default precision is 'ns'. See https://docs.influxdata.com/influxdb/v1.7/write_protocols/line_protocol_tutorial/#timestamp
// But it can be in ns, us, ms or s depending on the number of digits in practice.
for i := range rows {
tsPtr := &rows[i].Timestamp
*tsPtr = detectTimestamp(*tsPtr, currentTs)
}
} else if tsMultiplier >= 1 {
for i := range rows {
row := &rows[i]
if row.Timestamp == 0 {
row.Timestamp = currentTs
} else {
row.Timestamp /= tsMultiplier
}
}
} else if tsMultiplier < 0 {
tsMultiplier = -tsMultiplier
currentTs -= currentTs % tsMultiplier
for i := range rows {
row := &rows[i]
if row.Timestamp == 0 {
row.Timestamp = currentTs
} else {
row.Timestamp *= tsMultiplier
}
}
}
// Trim timestamps if required.
if tsTrim := trimTimestamp.Milliseconds(); tsTrim > 1 {
for i := range rows {
row := &rows[i]
row.Timestamp -= row.Timestamp % tsTrim
}
}
uw.runCallback(rows)
putUnmarshalWork(uw)
}
func getUnmarshalWork() *unmarshalWork {
v := unmarshalWorkPool.Get()
if v == nil {
return &unmarshalWork{}
}
return v.(*unmarshalWork)
}
func putUnmarshalWork(uw *unmarshalWork) {
uw.reset()
unmarshalWorkPool.Put(uw)
}
var unmarshalWorkPool sync.Pool
func detectTimestamp(ts, currentTs int64) int64 {
if ts == 0 {
return currentTs
}
if ts >= 1e17 {
// convert nanoseconds to milliseconds
return ts / 1e6
}
if ts >= 1e14 {
// convert microseconds to milliseconds
return ts / 1e3
}
if ts >= 1e11 {
// the ts is in milliseconds
return ts
}
// convert seconds to milliseconds
return ts * 1e3
}