VictoriaMetrics/app/vmselect/promql/eval.go
Roman Khavronenko 02e609b141
app/vmselect: set proper timestamp for cached instant responses (#5723)
* app/vmselect: set proper timestamp for cached instant responses

The change updates `getSumInstantValues` to prefer timestamp
from the most recent results. Before, timestamp from cached series
was used.

The old behavior had negative impact on recording rules as they
were getting responses with shifted timestamps in past.
Subsequent recording or alerting rules fetching results of these
recording rules could get no result due to staleness interval.

https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5659
Signed-off-by: hagen1778 <roman@victoriametrics.com>

* wip

---------

Signed-off-by: hagen1778 <roman@victoriametrics.com>
Co-authored-by: Aliaksandr Valialkin <valyala@victoriametrics.com>
2024-01-30 22:20:16 +02:00

2080 lines
67 KiB
Go

package promql
import (
"flag"
"fmt"
"math"
"regexp"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/netstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/auth"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/stringsutil"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/metricsql"
)
var (
disableCache = flag.Bool("search.disableCache", false, "Whether to disable response caching. This may be useful during data backfilling")
maxPointsSubqueryPerTimeseries = flag.Int("search.maxPointsSubqueryPerTimeseries", 100e3, "The maximum number of points per series, which can be generated by subquery. "+
"See https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3")
maxMemoryPerQuery = flagutil.NewBytes("search.maxMemoryPerQuery", 0, "The maximum amounts of memory a single query may consume. "+
"Queries requiring more memory are rejected. The total memory limit for concurrently executed queries can be estimated "+
"as -search.maxMemoryPerQuery multiplied by -search.maxConcurrentRequests . "+
"See also -search.logQueryMemoryUsage")
logQueryMemoryUsage = flagutil.NewBytes("search.logQueryMemoryUsage", 0, "Log query and increment vm_memory_intensive_queries_total metric each time "+
"the query requires more memory than specified by this flag. "+
"This may help detecting and optimizing heavy queries. Query logging is disabled by default. "+
"See also -search.logSlowQueryDuration and -search.maxMemoryPerQuery")
noStaleMarkers = flag.Bool("search.noStaleMarkers", false, "Set this flag to true if the database doesn't contain Prometheus stale markers, "+
"so there is no need in spending additional CPU time on its handling. Staleness markers may exist only in data obtained from Prometheus scrape targets")
minWindowForInstantRollupOptimization = flagutil.NewDuration("search.minWindowForInstantRollupOptimization", "3h", "Enable cache-based optimization for repeated queries "+
"to /api/v1/query (aka instant queries), which contain rollup functions with lookbehind window exceeding the given value")
)
// The minimum number of points per timeseries for enabling time rounding.
// This improves cache hit ratio for frequently requested queries over
// big time ranges.
const minTimeseriesPointsForTimeRounding = 50
// ValidateMaxPointsPerSeries validates that the number of points for the given start, end and step do not exceed maxPoints.
func ValidateMaxPointsPerSeries(start, end, step int64, maxPoints int) error {
if step == 0 {
return fmt.Errorf("step can't be equal to zero")
}
points := (end-start)/step + 1
if points > int64(maxPoints) {
return fmt.Errorf("too many points for the given start=%d, end=%d and step=%d: %d; the maximum number of points is %d",
start, end, step, points, maxPoints)
}
return nil
}
// AdjustStartEnd adjusts start and end values, so response caching may be enabled.
//
// See EvalConfig.mayCache() for details.
func AdjustStartEnd(start, end, step int64) (int64, int64) {
if *disableCache {
// Do not adjust start and end values when cache is disabled.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/563
return start, end
}
points := (end-start)/step + 1
if points < minTimeseriesPointsForTimeRounding {
// Too small number of points for rounding.
return start, end
}
// Round start and end to values divisible by step in order
// to enable response caching (see EvalConfig.mayCache).
start, end = alignStartEnd(start, end, step)
// Make sure that the new number of points is the same as the initial number of points.
newPoints := (end-start)/step + 1
for newPoints > points {
end -= step
newPoints--
}
return start, end
}
func alignStartEnd(start, end, step int64) (int64, int64) {
// Round start to the nearest smaller value divisible by step.
start -= start % step
// Round end to the nearest bigger value divisible by step.
adjust := end % step
if adjust > 0 {
end += step - adjust
}
return start, end
}
// EvalConfig is the configuration required for query evaluation via Exec
type EvalConfig struct {
AuthToken *auth.Token
Start int64
End int64
Step int64
// MaxSeries is the maximum number of time series, which can be scanned by the query.
// Zero means 'no limit'
MaxSeries int
// MaxPointsPerSeries is the limit on the number of points, which can be generated per each returned time series.
MaxPointsPerSeries int
// QuotedRemoteAddr contains quoted remote address.
QuotedRemoteAddr string
Deadline searchutils.Deadline
// Whether the response can be cached.
MayCache bool
// LookbackDelta is analog to `-query.lookback-delta` from Prometheus.
LookbackDelta int64
// How many decimal digits after the point to leave in response.
RoundDigits int
// EnforcedTagFilterss may contain additional label filters to use in the query.
EnforcedTagFilterss [][]storage.TagFilter
// The callback, which returns the request URI during logging.
// The request URI isn't stored here because its' construction may take non-trivial amounts of CPU.
GetRequestURI func() string
// Whether to deny partial response.
DenyPartialResponse bool
// IsPartialResponse is set during query execution and can be used by Exec caller after query execution.
IsPartialResponse atomic.Bool
// QueryStats contains various stats for the currently executed query.
//
// The caller must initialize QueryStats, otherwise it isn't collected.
QueryStats *QueryStats
timestamps []int64
timestampsOnce sync.Once
}
// copyEvalConfig returns src copy.
func copyEvalConfig(src *EvalConfig) *EvalConfig {
var ec EvalConfig
ec.AuthToken = src.AuthToken
ec.Start = src.Start
ec.End = src.End
ec.Step = src.Step
ec.MaxSeries = src.MaxSeries
ec.MaxPointsPerSeries = src.MaxPointsPerSeries
ec.Deadline = src.Deadline
ec.MayCache = src.MayCache
ec.LookbackDelta = src.LookbackDelta
ec.RoundDigits = src.RoundDigits
ec.EnforcedTagFilterss = src.EnforcedTagFilterss
ec.GetRequestURI = src.GetRequestURI
ec.DenyPartialResponse = src.DenyPartialResponse
ec.IsPartialResponse.Store(src.IsPartialResponse.Load())
ec.QueryStats = src.QueryStats
// do not copy src.timestamps - they must be generated again.
return &ec
}
// QueryStats contains various stats for the query.
type QueryStats struct {
// SeriesFetched contains the number of series fetched from storage during the query evaluation.
SeriesFetched int64
// ExecutionTimeMsec contains the number of milliseconds the query took to execute.
ExecutionTimeMsec int64
}
func (qs *QueryStats) addSeriesFetched(n int) {
if qs == nil {
return
}
atomic.AddInt64(&qs.SeriesFetched, int64(n))
}
func (qs *QueryStats) addExecutionTimeMsec(startTime time.Time) {
if qs == nil {
return
}
d := time.Since(startTime).Milliseconds()
atomic.AddInt64(&qs.ExecutionTimeMsec, d)
}
func (ec *EvalConfig) updateIsPartialResponse(isPartialResponse bool) {
ec.IsPartialResponse.CompareAndSwap(false, isPartialResponse)
}
func (ec *EvalConfig) validate() {
if ec.Start > ec.End {
logger.Panicf("BUG: start cannot exceed end; got %d vs %d", ec.Start, ec.End)
}
if ec.Step <= 0 {
logger.Panicf("BUG: step must be greater than 0; got %d", ec.Step)
}
}
func (ec *EvalConfig) mayCache() bool {
if *disableCache {
return false
}
if !ec.MayCache {
return false
}
if ec.Start == ec.End {
// There is no need in aligning start and end to step for instant query
// in order to cache its results.
return true
}
if ec.Start%ec.Step != 0 {
return false
}
if ec.End%ec.Step != 0 {
return false
}
return true
}
func (ec *EvalConfig) timeRangeString() string {
start := storage.TimestampToHumanReadableFormat(ec.Start)
end := storage.TimestampToHumanReadableFormat(ec.End)
return fmt.Sprintf("[%s..%s]", start, end)
}
func (ec *EvalConfig) getSharedTimestamps() []int64 {
ec.timestampsOnce.Do(ec.timestampsInit)
return ec.timestamps
}
func (ec *EvalConfig) timestampsInit() {
ec.timestamps = getTimestamps(ec.Start, ec.End, ec.Step, ec.MaxPointsPerSeries)
}
func getTimestamps(start, end, step int64, maxPointsPerSeries int) []int64 {
// Sanity checks.
if step <= 0 {
logger.Panicf("BUG: Step must be bigger than 0; got %d", step)
}
if start > end {
logger.Panicf("BUG: Start cannot exceed End; got %d vs %d", start, end)
}
if err := ValidateMaxPointsPerSeries(start, end, step, maxPointsPerSeries); err != nil {
logger.Panicf("BUG: %s; this must be validated before the call to getTimestamps", err)
}
// Prepare timestamps.
points := 1 + (end-start)/step
timestamps := make([]int64, points)
for i := range timestamps {
timestamps[i] = start
start += step
}
return timestamps
}
func evalExpr(qt *querytracer.Tracer, ec *EvalConfig, e metricsql.Expr) ([]*timeseries, error) {
if qt.Enabled() {
query := string(e.AppendString(nil))
query = stringsutil.LimitStringLen(query, 300)
mayCache := ec.mayCache()
qt = qt.NewChild("eval: query=%s, timeRange=%s, step=%d, mayCache=%v", query, ec.timeRangeString(), ec.Step, mayCache)
}
rv, err := evalExprInternal(qt, ec, e)
if err != nil {
return nil, err
}
if qt.Enabled() {
seriesCount := len(rv)
pointsPerSeries := 0
if len(rv) > 0 {
pointsPerSeries = len(rv[0].Timestamps)
}
pointsCount := seriesCount * pointsPerSeries
qt.Donef("series=%d, points=%d, pointsPerSeries=%d", seriesCount, pointsCount, pointsPerSeries)
}
return rv, nil
}
func evalExprInternal(qt *querytracer.Tracer, ec *EvalConfig, e metricsql.Expr) ([]*timeseries, error) {
if me, ok := e.(*metricsql.MetricExpr); ok {
re := &metricsql.RollupExpr{
Expr: me,
}
rv, err := evalRollupFunc(qt, ec, "default_rollup", rollupDefault, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, me.AppendString(nil), err)
}
return rv, nil
}
if re, ok := e.(*metricsql.RollupExpr); ok {
rv, err := evalRollupFunc(qt, ec, "default_rollup", rollupDefault, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, re.AppendString(nil), err)
}
return rv, nil
}
if fe, ok := e.(*metricsql.FuncExpr); ok {
nrf := getRollupFunc(fe.Name)
if nrf == nil {
qtChild := qt.NewChild("transform %s()", fe.Name)
rv, err := evalTransformFunc(qtChild, ec, fe)
qtChild.Donef("series=%d", len(rv))
return rv, err
}
args, re, err := evalRollupFuncArgs(qt, ec, fe)
if err != nil {
return nil, err
}
rf, err := nrf(args)
if err != nil {
return nil, err
}
rv, err := evalRollupFunc(qt, ec, fe.Name, rf, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err)
}
return rv, nil
}
if ae, ok := e.(*metricsql.AggrFuncExpr); ok {
qtChild := qt.NewChild("aggregate %s()", ae.Name)
rv, err := evalAggrFunc(qtChild, ec, ae)
qtChild.Donef("series=%d", len(rv))
return rv, err
}
if be, ok := e.(*metricsql.BinaryOpExpr); ok {
qtChild := qt.NewChild("binary op %q", be.Op)
rv, err := evalBinaryOp(qtChild, ec, be)
qtChild.Donef("series=%d", len(rv))
return rv, err
}
if ne, ok := e.(*metricsql.NumberExpr); ok {
rv := evalNumber(ec, ne.N)
return rv, nil
}
if se, ok := e.(*metricsql.StringExpr); ok {
rv := evalString(ec, se.S)
return rv, nil
}
if de, ok := e.(*metricsql.DurationExpr); ok {
d := de.Duration(ec.Step)
dSec := float64(d) / 1000
rv := evalNumber(ec, dSec)
return rv, nil
}
return nil, fmt.Errorf("unexpected expression %q", e.AppendString(nil))
}
func evalTransformFunc(qt *querytracer.Tracer, ec *EvalConfig, fe *metricsql.FuncExpr) ([]*timeseries, error) {
tf := getTransformFunc(fe.Name)
if tf == nil {
return nil, &UserReadableError{
Err: fmt.Errorf(`unknown func %q`, fe.Name),
}
}
var args [][]*timeseries
var err error
switch fe.Name {
case "", "union":
args, err = evalExprsInParallel(qt, ec, fe.Args)
default:
args, err = evalExprsSequentially(qt, ec, fe.Args)
}
if err != nil {
return nil, err
}
tfa := &transformFuncArg{
ec: ec,
fe: fe,
args: args,
}
rv, err := tf(tfa)
if err != nil {
return nil, &UserReadableError{
Err: fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err),
}
}
return rv, nil
}
func evalAggrFunc(qt *querytracer.Tracer, ec *EvalConfig, ae *metricsql.AggrFuncExpr) ([]*timeseries, error) {
if callbacks := getIncrementalAggrFuncCallbacks(ae.Name); callbacks != nil {
fe, nrf := tryGetArgRollupFuncWithMetricExpr(ae)
if fe != nil {
// There is an optimized path for calculating metricsql.AggrFuncExpr over rollupFunc over metricsql.MetricExpr.
// The optimized path saves RAM for aggregates over big number of time series.
args, re, err := evalRollupFuncArgs(qt, ec, fe)
if err != nil {
return nil, err
}
rf, err := nrf(args)
if err != nil {
return nil, err
}
iafc := newIncrementalAggrFuncContext(ae, callbacks)
return evalRollupFunc(qt, ec, fe.Name, rf, ae, re, iafc)
}
}
args, err := evalExprsInParallel(qt, ec, ae.Args)
if err != nil {
return nil, err
}
af := getAggrFunc(ae.Name)
if af == nil {
return nil, &UserReadableError{
Err: fmt.Errorf(`unknown func %q`, ae.Name),
}
}
afa := &aggrFuncArg{
ae: ae,
args: args,
ec: ec,
}
qtChild := qt.NewChild("eval %s", ae.Name)
rv, err := af(afa)
qtChild.Done()
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, ae.AppendString(nil), err)
}
return rv, nil
}
func evalBinaryOp(qt *querytracer.Tracer, ec *EvalConfig, be *metricsql.BinaryOpExpr) ([]*timeseries, error) {
bf := getBinaryOpFunc(be.Op)
if bf == nil {
return nil, fmt.Errorf(`unknown binary op %q`, be.Op)
}
var err error
var tssLeft, tssRight []*timeseries
switch strings.ToLower(be.Op) {
case "and", "if":
// Fetch right-side series at first, since it usually contains
// lower number of time series for `and` and `if` operator.
// This should produce more specific label filters for the left side of the query.
// This, in turn, should reduce the time to select series for the left side of the query.
tssRight, tssLeft, err = execBinaryOpArgs(qt, ec, be.Right, be.Left, be)
default:
tssLeft, tssRight, err = execBinaryOpArgs(qt, ec, be.Left, be.Right, be)
}
if err != nil {
return nil, fmt.Errorf("cannot execute %q: %w", be.AppendString(nil), err)
}
bfa := &binaryOpFuncArg{
be: be,
left: tssLeft,
right: tssRight,
}
rv, err := bf(bfa)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, be.AppendString(nil), err)
}
return rv, nil
}
func canPushdownCommonFilters(be *metricsql.BinaryOpExpr) bool {
switch strings.ToLower(be.Op) {
case "or", "default":
return false
}
if isAggrFuncWithoutGrouping(be.Left) || isAggrFuncWithoutGrouping(be.Right) {
return false
}
return true
}
func isAggrFuncWithoutGrouping(e metricsql.Expr) bool {
afe, ok := e.(*metricsql.AggrFuncExpr)
if !ok {
return false
}
return len(afe.Modifier.Args) == 0
}
func execBinaryOpArgs(qt *querytracer.Tracer, ec *EvalConfig, exprFirst, exprSecond metricsql.Expr, be *metricsql.BinaryOpExpr) ([]*timeseries, []*timeseries, error) {
if !canPushdownCommonFilters(be) {
// Execute exprFirst and exprSecond in parallel, since it is impossible to pushdown common filters
// from exprFirst to exprSecond.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2886
qt = qt.NewChild("execute left and right sides of %q in parallel", be.Op)
defer qt.Done()
var wg sync.WaitGroup
var tssFirst []*timeseries
var errFirst error
qtFirst := qt.NewChild("expr1")
wg.Add(1)
go func() {
defer wg.Done()
tssFirst, errFirst = evalExpr(qtFirst, ec, exprFirst)
qtFirst.Done()
}()
var tssSecond []*timeseries
var errSecond error
qtSecond := qt.NewChild("expr2")
wg.Add(1)
go func() {
defer wg.Done()
tssSecond, errSecond = evalExpr(qtSecond, ec, exprSecond)
qtSecond.Done()
}()
wg.Wait()
if errFirst != nil {
return nil, nil, errFirst
}
if errSecond != nil {
return nil, nil, errSecond
}
return tssFirst, tssSecond, nil
}
// Execute binary operation in the following way:
//
// 1) execute the exprFirst
// 2) get common label filters for series returned at step 1
// 3) push down the found common label filters to exprSecond. This filters out unneeded series
// during exprSecond execution instead of spending compute resources on extracting and processing these series
// before they are dropped later when matching time series according to https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching
// 4) execute the exprSecond with possible additional filters found at step 3
//
// Typical use cases:
// - Kubernetes-related: show pod creation time with the node name:
//
// kube_pod_created{namespace="prod"} * on (uid) group_left(node) kube_pod_info
//
// Without the optimization `kube_pod_info` would select and spend compute resources
// for more time series than needed. The selected time series would be dropped later
// when matching time series on the right and left sides of binary operand.
//
// - Generic alerting queries, which rely on `info` metrics.
// See https://grafana.com/blog/2021/08/04/how-to-use-promql-joins-for-more-effective-queries-of-prometheus-metrics-at-scale/
//
// - Queries, which get additional labels from `info` metrics.
// See https://www.robustperception.io/exposing-the-software-version-to-prometheus
tssFirst, err := evalExpr(qt, ec, exprFirst)
if err != nil {
return nil, nil, err
}
if len(tssFirst) == 0 && strings.ToLower(be.Op) != "or" {
// Fast path: there is no sense in executing the exprSecond when exprFirst returns an empty result,
// since the "exprFirst op exprSecond" would return an empty result in any case.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3349
return nil, nil, nil
}
lfs := getCommonLabelFilters(tssFirst)
lfs = metricsql.TrimFiltersByGroupModifier(lfs, be)
exprSecond = metricsql.PushdownBinaryOpFilters(exprSecond, lfs)
tssSecond, err := evalExpr(qt, ec, exprSecond)
if err != nil {
return nil, nil, err
}
return tssFirst, tssSecond, nil
}
func getCommonLabelFilters(tss []*timeseries) []metricsql.LabelFilter {
if len(tss) == 0 {
return nil
}
type valuesCounter struct {
values map[string]struct{}
count int
}
m := make(map[string]*valuesCounter, len(tss[0].MetricName.Tags))
for _, ts := range tss {
for _, tag := range ts.MetricName.Tags {
vc, ok := m[string(tag.Key)]
if !ok {
k := string(tag.Key)
v := string(tag.Value)
m[k] = &valuesCounter{
values: map[string]struct{}{
v: {},
},
count: 1,
}
continue
}
if len(vc.values) > 100 {
// Too many unique values found for the given tag.
// Do not make a filter on such values, since it may slow down
// search for matching time series.
continue
}
vc.count++
if _, ok := vc.values[string(tag.Value)]; !ok {
vc.values[string(tag.Value)] = struct{}{}
}
}
}
lfs := make([]metricsql.LabelFilter, 0, len(m))
var values []string
for k, vc := range m {
if vc.count != len(tss) {
// Skip the tag, since it doesn't belong to all the time series.
continue
}
values = values[:0]
for s := range vc.values {
values = append(values, s)
}
lf := metricsql.LabelFilter{
Label: k,
}
if len(values) == 1 {
lf.Value = values[0]
} else {
sort.Strings(values)
lf.Value = joinRegexpValues(values)
lf.IsRegexp = true
}
lfs = append(lfs, lf)
}
sort.Slice(lfs, func(i, j int) bool {
return lfs[i].Label < lfs[j].Label
})
return lfs
}
func joinRegexpValues(a []string) string {
var b []byte
for i, s := range a {
sQuoted := regexp.QuoteMeta(s)
b = append(b, sQuoted...)
if i < len(a)-1 {
b = append(b, '|')
}
}
return string(b)
}
func tryGetArgRollupFuncWithMetricExpr(ae *metricsql.AggrFuncExpr) (*metricsql.FuncExpr, newRollupFunc) {
if len(ae.Args) != 1 {
return nil, nil
}
e := ae.Args[0]
// Make sure e contains one of the following:
// - metricExpr
// - metricExpr[d]
// - rollupFunc(metricExpr)
// - rollupFunc(metricExpr[d])
if me, ok := e.(*metricsql.MetricExpr); ok {
// e = metricExpr
if me.IsEmpty() {
return nil, nil
}
fe := &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{me},
}
nrf := getRollupFunc(fe.Name)
return fe, nrf
}
if re, ok := e.(*metricsql.RollupExpr); ok {
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
return nil, nil
}
// e = metricExpr[d]
fe := &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{re},
}
nrf := getRollupFunc(fe.Name)
return fe, nrf
}
fe, ok := e.(*metricsql.FuncExpr)
if !ok {
return nil, nil
}
nrf := getRollupFunc(fe.Name)
if nrf == nil {
return nil, nil
}
rollupArgIdx := metricsql.GetRollupArgIdx(fe)
if rollupArgIdx >= len(fe.Args) {
// Incorrect number of args for rollup func.
return nil, nil
}
arg := fe.Args[rollupArgIdx]
if me, ok := arg.(*metricsql.MetricExpr); ok {
if me.IsEmpty() {
return nil, nil
}
// e = rollupFunc(metricExpr)
return fe, nrf
}
if re, ok := arg.(*metricsql.RollupExpr); ok {
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
return nil, nil
}
// e = rollupFunc(metricExpr[d])
return fe, nrf
}
return nil, nil
}
func evalExprsSequentially(qt *querytracer.Tracer, ec *EvalConfig, es []metricsql.Expr) ([][]*timeseries, error) {
var rvs [][]*timeseries
for _, e := range es {
rv, err := evalExpr(qt, ec, e)
if err != nil {
return nil, err
}
rvs = append(rvs, rv)
}
return rvs, nil
}
func evalExprsInParallel(qt *querytracer.Tracer, ec *EvalConfig, es []metricsql.Expr) ([][]*timeseries, error) {
if len(es) < 2 {
return evalExprsSequentially(qt, ec, es)
}
rvs := make([][]*timeseries, len(es))
errs := make([]error, len(es))
qt.Printf("eval function args in parallel")
var wg sync.WaitGroup
for i, e := range es {
wg.Add(1)
qtChild := qt.NewChild("eval arg %d", i)
go func(e metricsql.Expr, i int) {
defer func() {
qtChild.Done()
wg.Done()
}()
rv, err := evalExpr(qtChild, ec, e)
rvs[i] = rv
errs[i] = err
}(e, i)
}
wg.Wait()
for _, err := range errs {
if err != nil {
return nil, err
}
}
return rvs, nil
}
func evalRollupFuncArgs(qt *querytracer.Tracer, ec *EvalConfig, fe *metricsql.FuncExpr) ([]interface{}, *metricsql.RollupExpr, error) {
var re *metricsql.RollupExpr
rollupArgIdx := metricsql.GetRollupArgIdx(fe)
if len(fe.Args) <= rollupArgIdx {
return nil, nil, fmt.Errorf("expecting at least %d args to %q; got %d args; expr: %q", rollupArgIdx+1, fe.Name, len(fe.Args), fe.AppendString(nil))
}
args := make([]interface{}, len(fe.Args))
for i, arg := range fe.Args {
if i == rollupArgIdx {
re = getRollupExprArg(arg)
args[i] = re
continue
}
ts, err := evalExpr(qt, ec, arg)
if err != nil {
return nil, nil, fmt.Errorf("cannot evaluate arg #%d for %q: %w", i+1, fe.AppendString(nil), err)
}
args[i] = ts
}
return args, re, nil
}
func getRollupExprArg(arg metricsql.Expr) *metricsql.RollupExpr {
re, ok := arg.(*metricsql.RollupExpr)
if !ok {
// Wrap non-rollup arg into metricsql.RollupExpr.
return &metricsql.RollupExpr{
Expr: arg,
}
}
if !re.ForSubquery() {
// Return standard rollup if it doesn't contain subquery.
return re
}
me, ok := re.Expr.(*metricsql.MetricExpr)
if !ok {
// arg contains subquery.
return re
}
// Convert me[w:step] -> default_rollup(me)[w:step]
reNew := *re
reNew.Expr = &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{
&metricsql.RollupExpr{Expr: me},
},
}
return &reNew
}
// expr may contain:
// - rollupFunc(m) if iafc is nil
// - aggrFunc(rollupFunc(m)) if iafc isn't nil
func evalRollupFunc(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc, expr metricsql.Expr,
re *metricsql.RollupExpr, iafc *incrementalAggrFuncContext) ([]*timeseries, error) {
if re.At == nil {
return evalRollupFuncWithoutAt(qt, ec, funcName, rf, expr, re, iafc)
}
tssAt, err := evalExpr(qt, ec, re.At)
if err != nil {
return nil, &UserReadableError{
Err: fmt.Errorf("cannot evaluate `@` modifier: %w", err),
}
}
if len(tssAt) != 1 {
return nil, &UserReadableError{
Err: fmt.Errorf("`@` modifier must return a single series; it returns %d series instead", len(tssAt)),
}
}
atTimestamp := int64(tssAt[0].Values[0] * 1000)
ecNew := copyEvalConfig(ec)
ecNew.Start = atTimestamp
ecNew.End = atTimestamp
tss, err := evalRollupFuncWithoutAt(qt, ecNew, funcName, rf, expr, re, iafc)
if err != nil {
return nil, err
}
// expand single-point tss to the original time range.
timestamps := ec.getSharedTimestamps()
for _, ts := range tss {
v := ts.Values[0]
values := make([]float64, len(timestamps))
for i := range timestamps {
values[i] = v
}
ts.Timestamps = timestamps
ts.Values = values
}
return tss, nil
}
func evalRollupFuncWithoutAt(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc,
expr metricsql.Expr, re *metricsql.RollupExpr, iafc *incrementalAggrFuncContext) ([]*timeseries, error) {
funcName = strings.ToLower(funcName)
ecNew := ec
var offset int64
if re.Offset != nil {
offset = re.Offset.Duration(ec.Step)
ecNew = copyEvalConfig(ecNew)
ecNew.Start -= offset
ecNew.End -= offset
// There is no need in calling AdjustStartEnd() on ecNew if ecNew.MayCache is set to true,
// since the time range alignment has been already performed by the caller,
// so cache hit rate should be quite good.
// See also https://github.com/VictoriaMetrics/VictoriaMetrics/issues/976
}
if funcName == "rollup_candlestick" {
// Automatically apply `offset -step` to `rollup_candlestick` function
// in order to obtain expected OHLC results.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/309#issuecomment-582113462
step := ecNew.Step
ecNew = copyEvalConfig(ecNew)
ecNew.Start += step
ecNew.End += step
offset -= step
}
var rvs []*timeseries
var err error
if me, ok := re.Expr.(*metricsql.MetricExpr); ok {
rvs, err = evalRollupFuncWithMetricExpr(qt, ecNew, funcName, rf, expr, me, iafc, re.Window)
} else {
if iafc != nil {
logger.Panicf("BUG: iafc must be nil for rollup %q over subquery %q", funcName, re.AppendString(nil))
}
rvs, err = evalRollupFuncWithSubquery(qt, ecNew, funcName, rf, expr, re)
}
if err != nil {
return nil, &UserReadableError{
Err: err,
}
}
if funcName == "absent_over_time" {
rvs = aggregateAbsentOverTime(ecNew, re.Expr, rvs)
}
ec.updateIsPartialResponse(ecNew.IsPartialResponse.Load())
if offset != 0 && len(rvs) > 0 {
// Make a copy of timestamps, since they may be used in other values.
srcTimestamps := rvs[0].Timestamps
dstTimestamps := append([]int64{}, srcTimestamps...)
for i := range dstTimestamps {
dstTimestamps[i] += offset
}
for _, ts := range rvs {
ts.Timestamps = dstTimestamps
}
}
return rvs, nil
}
// aggregateAbsentOverTime collapses tss to a single time series with 1 and nan values.
//
// Values for returned series are set to nan if at least a single tss series contains nan at that point.
// This means that tss contains a series with non-empty results at that point.
// This follows Prometheus logic - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2130
func aggregateAbsentOverTime(ec *EvalConfig, expr metricsql.Expr, tss []*timeseries) []*timeseries {
rvs := getAbsentTimeseries(ec, expr)
if len(tss) == 0 {
return rvs
}
for i := range tss[0].Values {
for _, ts := range tss {
if math.IsNaN(ts.Values[i]) {
rvs[0].Values[i] = nan
break
}
}
}
return rvs
}
func evalRollupFuncWithSubquery(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc, expr metricsql.Expr, re *metricsql.RollupExpr) ([]*timeseries, error) {
// TODO: determine whether to use rollupResultCacheV here.
qt = qt.NewChild("subquery")
defer qt.Done()
step, err := re.Step.NonNegativeDuration(ec.Step)
if err != nil {
return nil, fmt.Errorf("cannot parse step in square brackets at %s: %w", expr.AppendString(nil), err)
}
if step == 0 {
step = ec.Step
}
window, err := re.Window.NonNegativeDuration(ec.Step)
if err != nil {
return nil, fmt.Errorf("cannot parse lookbehind window in square brackets at %s: %w", expr.AppendString(nil), err)
}
ecSQ := copyEvalConfig(ec)
ecSQ.Start -= window + step + maxSilenceInterval()
ecSQ.End += step
ecSQ.Step = step
ecSQ.MaxPointsPerSeries = *maxPointsSubqueryPerTimeseries
if err := ValidateMaxPointsPerSeries(ecSQ.Start, ecSQ.End, ecSQ.Step, ecSQ.MaxPointsPerSeries); err != nil {
return nil, fmt.Errorf("%w; (see -search.maxPointsSubqueryPerTimeseries command-line flag)", err)
}
// unconditionally align start and end args to step for subquery as Prometheus does.
ecSQ.Start, ecSQ.End = alignStartEnd(ecSQ.Start, ecSQ.End, ecSQ.Step)
tssSQ, err := evalExpr(qt, ecSQ, re.Expr)
if err != nil {
return nil, err
}
ec.updateIsPartialResponse(ecSQ.IsPartialResponse.Load())
if len(tssSQ) == 0 {
return nil, nil
}
sharedTimestamps := getTimestamps(ec.Start, ec.End, ec.Step, ec.MaxPointsPerSeries)
preFunc, rcs, err := getRollupConfigs(funcName, rf, expr, ec.Start, ec.End, ec.Step, ec.MaxPointsPerSeries, window, ec.LookbackDelta, sharedTimestamps)
if err != nil {
return nil, err
}
var samplesScannedTotal uint64
keepMetricNames := getKeepMetricNames(expr)
tsw := getTimeseriesByWorkerID()
seriesByWorkerID := tsw.byWorkerID
doParallel(tssSQ, func(tsSQ *timeseries, values []float64, timestamps []int64, workerID uint) ([]float64, []int64) {
values, timestamps = removeNanValues(values[:0], timestamps[:0], tsSQ.Values, tsSQ.Timestamps)
preFunc(values, timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(funcName, keepMetricNames, sharedTimestamps, &tsSQ.MetricName); tsm != nil {
samplesScanned := rc.DoTimeseriesMap(tsm, values, timestamps)
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
seriesByWorkerID[workerID].tss = tsm.AppendTimeseriesTo(seriesByWorkerID[workerID].tss)
continue
}
var ts timeseries
samplesScanned := doRollupForTimeseries(funcName, keepMetricNames, rc, &ts, &tsSQ.MetricName, values, timestamps, sharedTimestamps)
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
seriesByWorkerID[workerID].tss = append(seriesByWorkerID[workerID].tss, &ts)
}
return values, timestamps
})
tss := make([]*timeseries, 0, len(tssSQ)*len(rcs))
for i := range seriesByWorkerID {
tss = append(tss, seriesByWorkerID[i].tss...)
}
putTimeseriesByWorkerID(tsw)
rowsScannedPerQuery.Update(float64(samplesScannedTotal))
qt.Printf("rollup %s() over %d series returned by subquery: series=%d, samplesScanned=%d", funcName, len(tssSQ), len(tss), samplesScannedTotal)
return tss, nil
}
var rowsScannedPerQuery = metrics.NewHistogram(`vm_rows_scanned_per_query`)
func getKeepMetricNames(expr metricsql.Expr) bool {
if ae, ok := expr.(*metricsql.AggrFuncExpr); ok {
// Extract rollupFunc(...) from aggrFunc(rollupFunc(...)).
// This case is possible when optimized aggrFunc calculations are used
// such as `sum(rate(...))`
if len(ae.Args) != 1 {
return false
}
expr = ae.Args[0]
}
if fe, ok := expr.(*metricsql.FuncExpr); ok {
return fe.KeepMetricNames
}
return false
}
func doParallel(tss []*timeseries, f func(ts *timeseries, values []float64, timestamps []int64, workerID uint) ([]float64, []int64)) {
workers := netstorage.MaxWorkers()
if workers > len(tss) {
workers = len(tss)
}
seriesPerWorker := (len(tss) + workers - 1) / workers
workChs := make([]chan *timeseries, workers)
for i := range workChs {
workChs[i] = make(chan *timeseries, seriesPerWorker)
}
for i, ts := range tss {
idx := i % len(workChs)
workChs[idx] <- ts
}
for _, workCh := range workChs {
close(workCh)
}
var wg sync.WaitGroup
wg.Add(workers)
for i := 0; i < workers; i++ {
go func(workerID uint) {
defer wg.Done()
var tmpValues []float64
var tmpTimestamps []int64
for ts := range workChs[workerID] {
tmpValues, tmpTimestamps = f(ts, tmpValues, tmpTimestamps, workerID)
}
}(uint(i))
}
wg.Wait()
}
func removeNanValues(dstValues []float64, dstTimestamps []int64, values []float64, timestamps []int64) ([]float64, []int64) {
hasNan := false
for _, v := range values {
if math.IsNaN(v) {
hasNan = true
}
}
if !hasNan {
// Fast path - no NaNs.
dstValues = append(dstValues, values...)
dstTimestamps = append(dstTimestamps, timestamps...)
return dstValues, dstTimestamps
}
// Slow path - remove NaNs.
for i, v := range values {
if math.IsNaN(v) {
continue
}
dstValues = append(dstValues, v)
dstTimestamps = append(dstTimestamps, timestamps[i])
}
return dstValues, dstTimestamps
}
// evalInstantRollup evaluates instant rollup where ec.Start == ec.End.
func evalInstantRollup(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc,
expr metricsql.Expr, me *metricsql.MetricExpr, iafc *incrementalAggrFuncContext, window int64) ([]*timeseries, error) {
if ec.Start != ec.End {
logger.Panicf("BUG: evalInstantRollup cannot be called on non-empty time range; got %s", ec.timeRangeString())
}
timestamp := ec.Start
if qt.Enabled() {
qt = qt.NewChild("instant rollup %s; time=%s, window=%d", expr.AppendString(nil), storage.TimestampToHumanReadableFormat(timestamp), window)
defer qt.Done()
}
evalAt := func(qt *querytracer.Tracer, timestamp, window int64) ([]*timeseries, error) {
ecCopy := copyEvalConfig(ec)
ecCopy.Start = timestamp
ecCopy.End = timestamp
pointsPerSeries := int64(1)
tss, err := evalRollupFuncNoCache(qt, ecCopy, funcName, rf, expr, me, iafc, window, pointsPerSeries)
if err != nil {
return nil, err
}
ec.updateIsPartialResponse(ecCopy.IsPartialResponse.Load())
return tss, nil
}
tooBigOffset := func(offset int64) bool {
maxOffset := window / 2
if maxOffset > 1800*1000 {
maxOffset = 1800 * 1000
}
return offset >= maxOffset
}
deleteCachedSeries := func(qt *querytracer.Tracer) {
rollupResultCacheV.DeleteInstantValues(qt, ec.AuthToken, expr, window, ec.Step, ec.EnforcedTagFilterss)
}
getCachedSeries := func(qt *querytracer.Tracer) ([]*timeseries, int64, error) {
again:
offset := int64(0)
tssCached := rollupResultCacheV.GetInstantValues(qt, ec.AuthToken, expr, window, ec.Step, ec.EnforcedTagFilterss)
ec.QueryStats.addSeriesFetched(len(tssCached))
if len(tssCached) == 0 {
// Cache miss. Re-populate the missing data.
start := int64(fasttime.UnixTimestamp()*1000) - cacheTimestampOffset.Milliseconds()
offset = timestamp - start
if offset < 0 {
start = timestamp
offset = 0
}
if tooBigOffset(offset) {
qt.Printf("cannot apply instant rollup optimization because the -search.cacheTimestampOffset=%s is too big "+
"for the requested time=%s and window=%d", cacheTimestampOffset, storage.TimestampToHumanReadableFormat(timestamp), window)
tss, err := evalAt(qt, timestamp, window)
return tss, 0, err
}
qt.Printf("calculating the rollup at time=%s, because it is missing in the cache", storage.TimestampToHumanReadableFormat(start))
tss, err := evalAt(qt, start, window)
if err != nil {
return nil, 0, err
}
if hasDuplicateSeries(tss) {
qt.Printf("cannot apply instant rollup optimization because the result contains duplicate series")
tss, err := evalAt(qt, timestamp, window)
return tss, 0, err
}
rollupResultCacheV.PutInstantValues(qt, ec.AuthToken, expr, window, ec.Step, ec.EnforcedTagFilterss, tss)
return tss, offset, nil
}
// Cache hit. Verify whether it is OK to use the cached data.
offset = timestamp - tssCached[0].Timestamps[0]
if offset < 0 {
qt.Printf("do not apply instant rollup optimization because the cached values have bigger timestamp=%s than the requested one=%s",
storage.TimestampToHumanReadableFormat(tssCached[0].Timestamps[0]), storage.TimestampToHumanReadableFormat(timestamp))
// Delete the outdated cached values, so the cache could be re-populated with newer values.
deleteCachedSeries(qt)
goto again
}
if tooBigOffset(offset) {
qt.Printf("do not apply instant rollup optimization because the offset=%d between the requested timestamp "+
"and the cached values is too big comparing to window=%d", offset, window)
// Delete the outdated cached values, so the cache could be re-populated with newer values.
deleteCachedSeries(qt)
goto again
}
return tssCached, offset, nil
}
if !ec.mayCache() {
qt.Printf("do not apply instant rollup optimization because of disabled cache")
return evalAt(qt, timestamp, window)
}
if window < minWindowForInstantRollupOptimization.Milliseconds() {
qt.Printf("do not apply instant rollup optimization because of too small window=%d; must be equal or bigger than %d",
window, minWindowForInstantRollupOptimization.Milliseconds())
return evalAt(qt, timestamp, window)
}
switch funcName {
case "avg_over_time":
if iafc != nil {
qt.Printf("do not apply instant rollup optimization for incremental aggregate %s()", iafc.ae.Name)
return evalAt(qt, timestamp, window)
}
qt.Printf("optimized calculation for instant rollup avg_over_time(m[d]) as (sum_over_time(m[d]) / count_over_time(m[d]))")
fe := expr.(*metricsql.FuncExpr)
feSum := *fe
feSum.Name = "sum_over_time"
feCount := *fe
feCount.Name = "count_over_time"
be := &metricsql.BinaryOpExpr{
Op: "/",
KeepMetricNames: fe.KeepMetricNames,
Left: &feSum,
Right: &feCount,
}
return evalExpr(qt, ec, be)
case "rate":
if iafc != nil {
if strings.ToLower(iafc.ae.Name) != "sum" {
qt.Printf("do not apply instant rollup optimization for incremental aggregate %s()", iafc.ae.Name)
return evalAt(qt, timestamp, window)
}
qt.Printf("optimized calculation for sum(rate(m[d])) as (sum(increase(m[d])) / d)")
afe := expr.(*metricsql.AggrFuncExpr)
fe := afe.Args[0].(*metricsql.FuncExpr)
feIncrease := *fe
feIncrease.Name = "increase"
re := fe.Args[0].(*metricsql.RollupExpr)
d := re.Window.Duration(ec.Step)
if d == 0 {
d = ec.Step
}
afeIncrease := *afe
afeIncrease.Args = []metricsql.Expr{&feIncrease}
be := &metricsql.BinaryOpExpr{
Op: "/",
KeepMetricNames: true,
Left: &afeIncrease,
Right: &metricsql.NumberExpr{
N: float64(d) / 1000,
},
}
return evalExpr(qt, ec, be)
}
qt.Printf("optimized calculation for instant rollup rate(m[d]) as (increase(m[d]) / d)")
fe := expr.(*metricsql.FuncExpr)
feIncrease := *fe
feIncrease.Name = "increase"
re := fe.Args[0].(*metricsql.RollupExpr)
d := re.Window.Duration(ec.Step)
if d == 0 {
d = ec.Step
}
be := &metricsql.BinaryOpExpr{
Op: "/",
KeepMetricNames: fe.KeepMetricNames,
Left: &feIncrease,
Right: &metricsql.NumberExpr{
N: float64(d) / 1000,
},
}
return evalExpr(qt, ec, be)
case "max_over_time":
if iafc != nil {
if strings.ToLower(iafc.ae.Name) != "max" {
qt.Printf("do not apply instant rollup optimization for non-max incremental aggregate %s()", iafc.ae.Name)
return evalAt(qt, timestamp, window)
}
}
// Calculate
//
// max_over_time(m[window] @ timestamp)
//
// as the maximum of
//
// - max_over_time(m[window] @ (timestamp-offset))
// - max_over_time(m[offset] @ timestamp)
//
// if max_over_time(m[offset] @ (timestamp-window)) < max_over_time(m[window] @ (timestamp-offset))
// otherwise do not apply the optimization
//
// where
//
// - max_over_time(m[window] @ (timestamp-offset)) is obtained from cache
// - max_over_time(m[offset] @ timestamp) and max_over_time(m[offset] @ (timestamp-window)) are calculated from the storage
// These rollups are calculated faster than max_over_time(m[window]) because offset is smaller than window.
qtChild := qt.NewChild("optimized calculation for instant rollup %s at time=%s with lookbehind window=%d",
expr.AppendString(nil), storage.TimestampToHumanReadableFormat(timestamp), window)
defer qtChild.Done()
tssCached, offset, err := getCachedSeries(qtChild)
if err != nil {
return nil, err
}
if offset == 0 {
return tssCached, nil
}
// Calculate max_over_time(m[offset] @ timestamp)
tssStart, err := evalAt(qtChild, timestamp, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssStart) {
qtChild.Printf("cannot apply instant rollup optimization, since tssStart contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate max_over_time(m[offset] @ (timestamp - window))
tssEnd, err := evalAt(qtChild, timestamp-window, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssEnd) {
qtChild.Printf("cannot apply instant rollup optimization, since tssEnd contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate the result
tss, ok := getMaxInstantValues(qtChild, tssCached, tssStart, tssEnd, timestamp)
if !ok {
qtChild.Printf("cannot apply instant rollup optimization, since tssEnd contains bigger values than tssCached")
deleteCachedSeries(qtChild)
return evalAt(qt, timestamp, window)
}
return tss, nil
case "min_over_time":
if iafc != nil {
if strings.ToLower(iafc.ae.Name) != "min" {
qt.Printf("do not apply instant rollup optimization for non-min incremental aggregate %s()", iafc.ae.Name)
return evalAt(qt, timestamp, window)
}
}
// Calculate
//
// min_over_time(m[window] @ timestamp)
//
// as the minimum of
//
// - min_over_time(m[window] @ (timestamp-offset))
// - min_over_time(m[offset] @ timestamp)
//
// if min_over_time(m[offset] @ (timestamp-window)) > min_over_time(m[window] @ (timestamp-offset))
// otherwise do not apply the optimization
//
// where
//
// - min_over_time(m[window] @ (timestamp-offset)) is obtained from cache
// - min_over_time(m[offset] @ timestamp) and min_over_time(m[offset] @ (timestamp-window)) are calculated from the storage
// These rollups are calculated faster than min_over_time(m[window]) because offset is smaller than window.
qtChild := qt.NewChild("optimized calculation for instant rollup %s at time=%s with lookbehind window=%d",
expr.AppendString(nil), storage.TimestampToHumanReadableFormat(timestamp), window)
defer qtChild.Done()
tssCached, offset, err := getCachedSeries(qtChild)
if err != nil {
return nil, err
}
if offset == 0 {
return tssCached, nil
}
// Calculate min_over_time(m[offset] @ timestamp)
tssStart, err := evalAt(qtChild, timestamp, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssStart) {
qtChild.Printf("cannot apply instant rollup optimization, since tssStart contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate min_over_time(m[offset] @ (timestamp - window))
tssEnd, err := evalAt(qtChild, timestamp-window, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssEnd) {
qtChild.Printf("cannot apply instant rollup optimization, since tssEnd contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate the result
tss, ok := getMinInstantValues(qtChild, tssCached, tssStart, tssEnd, timestamp)
if !ok {
qtChild.Printf("cannot apply instant rollup optimization, since tssEnd contains smaller values than tssCached")
deleteCachedSeries(qtChild)
return evalAt(qt, timestamp, window)
}
return tss, nil
case
"count_eq_over_time",
"count_gt_over_time",
"count_le_over_time",
"count_ne_over_time",
"count_over_time",
"increase",
"increase_pure",
"sum_over_time":
if iafc != nil && strings.ToLower(iafc.ae.Name) != "sum" {
qt.Printf("do not apply instant rollup optimization for non-sum incremental aggregate %s()", iafc.ae.Name)
return evalAt(qt, timestamp, window)
}
// Calculate
//
// rf(m[window] @ timestamp)
//
// as
//
// rf(m[window] @ (timestamp-offset)) + rf(m[offset] @ timestamp) - rf(m[offset] @ (timestamp-window))
//
// where
//
// - rf is count_over_time, sum_over_time or increase
// - rf(m[window] @ (timestamp-offset)) is obtained from cache
// - rf(m[offset] @ timestamp) and rf(m[offset] @ (timestamp-window)) are calculated from the storage
// These rollups are calculated faster than rf(m[window]) because offset is smaller than window.
qtChild := qt.NewChild("optimized calculation for instant rollup %s at time=%s with lookbehind window=%d",
expr.AppendString(nil), storage.TimestampToHumanReadableFormat(timestamp), window)
defer qtChild.Done()
tssCached, offset, err := getCachedSeries(qtChild)
if err != nil {
return nil, err
}
if offset == 0 {
return tssCached, nil
}
// Calculate rf(m[offset] @ timestamp)
tssStart, err := evalAt(qtChild, timestamp, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssStart) {
qtChild.Printf("cannot apply instant rollup optimization, since tssStart contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate rf(m[offset] @ (timestamp - window))
tssEnd, err := evalAt(qtChild, timestamp-window, offset)
if err != nil {
return nil, err
}
if hasDuplicateSeries(tssEnd) {
qtChild.Printf("cannot apply instant rollup optimization, since tssEnd contains duplicate series")
return evalAt(qtChild, timestamp, window)
}
// Calculate the result
tss := getSumInstantValues(qtChild, tssCached, tssStart, tssEnd, timestamp)
return tss, nil
default:
qt.Printf("instant rollup optimization isn't implemented for %s()", funcName)
return evalAt(qt, timestamp, window)
}
}
func hasDuplicateSeries(tss []*timeseries) bool {
if len(tss) <= 1 {
return false
}
m := make(map[string]struct{}, len(tss))
bb := bbPool.Get()
defer bbPool.Put(bb)
for _, ts := range tss {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
if _, ok := m[string(bb.B)]; ok {
return true
}
m[string(bb.B)] = struct{}{}
}
return false
}
func getMinInstantValues(qt *querytracer.Tracer, tssCached, tssStart, tssEnd []*timeseries, timestamp int64) ([]*timeseries, bool) {
qt = qt.NewChild("calculate the minimum for instant values across series; cached=%d, start=%d, end=%d, timestamp=%d", len(tssCached), len(tssStart), len(tssEnd), timestamp)
defer qt.Done()
getMin := func(a, b float64) float64 {
if a < b {
return a
}
return b
}
tss, ok := getMinMaxInstantValues(tssCached, tssStart, tssEnd, timestamp, getMin)
qt.Printf("resulting series=%d; ok=%v", len(tss), ok)
return tss, ok
}
func getMaxInstantValues(qt *querytracer.Tracer, tssCached, tssStart, tssEnd []*timeseries, timestamp int64) ([]*timeseries, bool) {
qt = qt.NewChild("calculate the maximum for instant values across series; cached=%d, start=%d, end=%d, timestamp=%d", len(tssCached), len(tssStart), len(tssEnd), timestamp)
defer qt.Done()
getMax := func(a, b float64) float64 {
if a > b {
return a
}
return b
}
tss, ok := getMinMaxInstantValues(tssCached, tssStart, tssEnd, timestamp, getMax)
qt.Printf("resulting series=%d", len(tss))
return tss, ok
}
func getMinMaxInstantValues(tssCached, tssStart, tssEnd []*timeseries, timestamp int64, f func(a, b float64) float64) ([]*timeseries, bool) {
assertInstantValues(tssCached)
assertInstantValues(tssStart)
assertInstantValues(tssEnd)
bb := bbPool.Get()
defer bbPool.Put(bb)
m := make(map[string]*timeseries, len(tssCached))
for _, ts := range tssCached {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
if _, ok := m[string(bb.B)]; ok {
logger.Panicf("BUG: duplicate series found: %s", &ts.MetricName)
}
m[string(bb.B)] = ts
}
mStart := make(map[string]*timeseries, len(tssStart))
for _, ts := range tssStart {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
if _, ok := mStart[string(bb.B)]; ok {
logger.Panicf("BUG: duplicate series found: %s", &ts.MetricName)
}
mStart[string(bb.B)] = ts
tsCached := m[string(bb.B)]
if tsCached != nil && !math.IsNaN(tsCached.Values[0]) {
if !math.IsNaN(ts.Values[0]) {
tsCached.Values[0] = f(ts.Values[0], tsCached.Values[0])
}
} else {
m[string(bb.B)] = ts
}
}
for _, ts := range tssEnd {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
tsCached := m[string(bb.B)]
if tsCached != nil && !math.IsNaN(tsCached.Values[0]) && !math.IsNaN(ts.Values[0]) {
if ts.Values[0] == f(ts.Values[0], tsCached.Values[0]) {
tsStart := mStart[string(bb.B)]
if tsStart == nil || math.IsNaN(tsStart.Values[0]) || tsStart.Values[0] != f(ts.Values[0], tsStart.Values[0]) {
return nil, false
}
}
}
}
rvs := make([]*timeseries, 0, len(m))
for _, ts := range m {
rvs = append(rvs, ts)
}
setInstantTimestamp(rvs, timestamp)
return rvs, true
}
// getSumInstantValues aggregates tssCached, tssStart, tssEnd time series
// into a new time series with value = tssCached + tssStart - tssEnd
func getSumInstantValues(qt *querytracer.Tracer, tssCached, tssStart, tssEnd []*timeseries, timestamp int64) []*timeseries {
qt = qt.NewChild("calculate the sum for instant values across series; cached=%d, start=%d, end=%d, timestamp=%d", len(tssCached), len(tssStart), len(tssEnd), timestamp)
defer qt.Done()
assertInstantValues(tssCached)
assertInstantValues(tssStart)
assertInstantValues(tssEnd)
m := make(map[string]*timeseries, len(tssCached))
bb := bbPool.Get()
defer bbPool.Put(bb)
for _, ts := range tssCached {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
if _, ok := m[string(bb.B)]; ok {
logger.Panicf("BUG: duplicate series found: %s", &ts.MetricName)
}
m[string(bb.B)] = ts
}
for _, ts := range tssStart {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
tsCached := m[string(bb.B)]
if tsCached != nil && !math.IsNaN(tsCached.Values[0]) {
if !math.IsNaN(ts.Values[0]) {
tsCached.Values[0] += ts.Values[0]
}
} else {
m[string(bb.B)] = ts
}
}
for _, ts := range tssEnd {
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
tsCached := m[string(bb.B)]
if tsCached != nil && !math.IsNaN(tsCached.Values[0]) {
if !math.IsNaN(ts.Values[0]) {
tsCached.Values[0] -= ts.Values[0]
}
}
}
rvs := make([]*timeseries, 0, len(m))
for _, ts := range m {
rvs = append(rvs, ts)
}
setInstantTimestamp(rvs, timestamp)
qt.Printf("resulting series=%d", len(rvs))
return rvs
}
func setInstantTimestamp(tss []*timeseries, timestamp int64) {
for _, ts := range tss {
ts.Timestamps[0] = timestamp
}
}
func assertInstantValues(tss []*timeseries) {
for _, ts := range tss {
if len(ts.Values) != 1 {
logger.Panicf("BUG: instant series must contain a single value; got %d values", len(ts.Values))
}
if len(ts.Timestamps) != 1 {
logger.Panicf("BUG: instant series must contain a single timestamp; got %d timestamps", len(ts.Timestamps))
}
}
}
var (
rollupResultCacheFullHits = metrics.NewCounter(`vm_rollup_result_cache_full_hits_total`)
rollupResultCachePartialHits = metrics.NewCounter(`vm_rollup_result_cache_partial_hits_total`)
rollupResultCacheMiss = metrics.NewCounter(`vm_rollup_result_cache_miss_total`)
memoryIntensiveQueries = metrics.NewCounter(`vm_memory_intensive_queries_total`)
)
func evalRollupFuncWithMetricExpr(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc,
expr metricsql.Expr, me *metricsql.MetricExpr, iafc *incrementalAggrFuncContext, windowExpr *metricsql.DurationExpr) ([]*timeseries, error) {
window, err := windowExpr.NonNegativeDuration(ec.Step)
if err != nil {
return nil, fmt.Errorf("cannot parse lookbehind window in square brackets at %s: %w", expr.AppendString(nil), err)
}
if me.IsEmpty() {
return evalNumber(ec, nan), nil
}
if ec.Start == ec.End {
rvs, err := evalInstantRollup(qt, ec, funcName, rf, expr, me, iafc, window)
if err != nil {
err = &UserReadableError{
Err: err,
}
return nil, err
}
return rvs, nil
}
pointsPerSeries := 1 + (ec.End-ec.Start)/ec.Step
evalWithConfig := func(ec *EvalConfig) ([]*timeseries, error) {
tss, err := evalRollupFuncNoCache(qt, ec, funcName, rf, expr, me, iafc, window, pointsPerSeries)
if err != nil {
err = &UserReadableError{
Err: err,
}
return nil, err
}
return tss, nil
}
if !ec.mayCache() {
qt.Printf("do not fetch series from cache, since it is disabled in the current context")
return evalWithConfig(ec)
}
// Search for cached results.
tssCached, start := rollupResultCacheV.GetSeries(qt, ec, expr, window)
ec.QueryStats.addSeriesFetched(len(tssCached))
if start > ec.End {
qt.Printf("the result is fully cached")
rollupResultCacheFullHits.Inc()
return tssCached, nil
}
if start > ec.Start {
qt.Printf("partial cache hit")
rollupResultCachePartialHits.Inc()
} else {
qt.Printf("cache miss")
rollupResultCacheMiss.Inc()
}
// Fetch missing results, which aren't cached yet.
ecNew := ec
if start != ec.Start {
ecNew = copyEvalConfig(ec)
ecNew.Start = start
}
tss, err := evalWithConfig(ecNew)
if err != nil {
return nil, err
}
isPartial := ecNew.IsPartialResponse.Load()
// Merge cached results with the fetched additional results.
rvs, ok := mergeSeries(qt, tssCached, tss, start, ec)
if !ok {
// Cannot merge series - fall back to non-cached querying.
qt.Printf("fall back to non-caching querying")
rvs, err = evalWithConfig(ec)
if err != nil {
return nil, err
}
isPartial = ec.IsPartialResponse.Load()
}
ec.updateIsPartialResponse(isPartial)
if !isPartial {
rollupResultCacheV.PutSeries(qt, ec, expr, window, rvs)
}
return rvs, nil
}
// evalRollupFuncNoCache calculates the given rf with the given lookbehind window.
//
// pointsPerSeries is used only for estimating the needed memory for query processing
func evalRollupFuncNoCache(qt *querytracer.Tracer, ec *EvalConfig, funcName string, rf rollupFunc,
expr metricsql.Expr, me *metricsql.MetricExpr, iafc *incrementalAggrFuncContext, window, pointsPerSeries int64) ([]*timeseries, error) {
if qt.Enabled() {
qt = qt.NewChild("rollup %s: timeRange=%s, step=%d, window=%d", expr.AppendString(nil), ec.timeRangeString(), ec.Step, window)
defer qt.Done()
}
if window < 0 {
return nil, nil
}
// Obtain rollup configs before fetching data from db, so type errors could be caught earlier.
sharedTimestamps := getTimestamps(ec.Start, ec.End, ec.Step, ec.MaxPointsPerSeries)
preFunc, rcs, err := getRollupConfigs(funcName, rf, expr, ec.Start, ec.End, ec.Step, ec.MaxPointsPerSeries, window, ec.LookbackDelta, sharedTimestamps)
if err != nil {
return nil, err
}
// Fetch the result.
tfss := searchutils.ToTagFilterss(me.LabelFilterss)
tfss = searchutils.JoinTagFilterss(tfss, ec.EnforcedTagFilterss)
minTimestamp := ec.Start
if needSilenceIntervalForRollupFunc(funcName) {
minTimestamp -= maxSilenceInterval()
}
if window > ec.Step {
minTimestamp -= window
} else {
minTimestamp -= ec.Step
}
sq := storage.NewSearchQuery(ec.AuthToken.AccountID, ec.AuthToken.ProjectID, minTimestamp, ec.End, tfss, ec.MaxSeries)
rss, isPartial, err := netstorage.ProcessSearchQuery(qt, ec.DenyPartialResponse, sq, ec.Deadline)
if err != nil {
return nil, err
}
ec.updateIsPartialResponse(isPartial)
rssLen := rss.Len()
if rssLen == 0 {
rss.Cancel()
return nil, nil
}
ec.QueryStats.addSeriesFetched(rssLen)
// Verify timeseries fit available memory during rollup calculations.
timeseriesLen := rssLen
if iafc != nil {
// Incremental aggregates require holding only GOMAXPROCS timeseries in memory.
timeseriesLen = cgroup.AvailableCPUs()
if iafc.ae.Modifier.Op != "" {
if iafc.ae.Limit > 0 {
// There is an explicit limit on the number of output time series.
timeseriesLen *= iafc.ae.Limit
} else {
// Increase the number of timeseries for non-empty group list: `aggr() by (something)`,
// since each group can have own set of time series in memory.
timeseriesLen *= 1000
}
}
// The maximum number of output time series is limited by rssLen.
if timeseriesLen > rssLen {
timeseriesLen = rssLen
}
}
rollupPoints := mulNoOverflow(pointsPerSeries, int64(timeseriesLen*len(rcs)))
rollupMemorySize := sumNoOverflow(mulNoOverflow(int64(rssLen), 1000), mulNoOverflow(rollupPoints, 16))
if maxMemory := int64(logQueryMemoryUsage.N); maxMemory > 0 && rollupMemorySize > maxMemory {
memoryIntensiveQueries.Inc()
requestURI := ec.GetRequestURI()
logger.Warnf("remoteAddr=%s, requestURI=%s: the %s requires %d bytes of memory for processing; "+
"logging this query, since it exceeds the -search.logQueryMemoryUsage=%d; "+
"the query selects %d time series and generates %d points across all the time series; try reducing the number of selected time series",
ec.QuotedRemoteAddr, requestURI, expr.AppendString(nil), rollupMemorySize, maxMemory, timeseriesLen*len(rcs), rollupPoints)
}
if maxMemory := int64(maxMemoryPerQuery.N); maxMemory > 0 && rollupMemorySize > maxMemory {
rss.Cancel()
err := fmt.Errorf("not enough memory for processing %s, which returns %d data points across %d time series with %d points in each time series "+
"according to -search.maxMemoryPerQuery=%d; requested memory: %d bytes; "+
"possible solutions are: reducing the number of matching time series; increasing `step` query arg (step=%gs); "+
"increasing -search.maxMemoryPerQuery",
expr.AppendString(nil), rollupPoints, timeseriesLen*len(rcs), pointsPerSeries, maxMemory, rollupMemorySize, float64(ec.Step)/1e3)
return nil, err
}
rml := getRollupMemoryLimiter()
if !rml.Get(uint64(rollupMemorySize)) {
rss.Cancel()
err := fmt.Errorf("not enough memory for processing %s, which returns %d data points across %d time series with %d points in each time series; "+
"total available memory for concurrent requests: %d bytes; requested memory: %d bytes; "+
"possible solutions are: reducing the number of matching time series; increasing `step` query arg (step=%gs); "+
"switching to node with more RAM; increasing -memory.allowedPercent",
expr.AppendString(nil), rollupPoints, timeseriesLen*len(rcs), pointsPerSeries, rml.MaxSize, uint64(rollupMemorySize), float64(ec.Step)/1e3)
return nil, err
}
defer rml.Put(uint64(rollupMemorySize))
qt.Printf("the rollup evaluation needs an estimated %d bytes of RAM for %d series and %d points per series (summary %d points)",
rollupMemorySize, timeseriesLen, pointsPerSeries, rollupPoints)
// Evaluate rollup
keepMetricNames := getKeepMetricNames(expr)
if iafc != nil {
return evalRollupWithIncrementalAggregate(qt, funcName, keepMetricNames, iafc, rss, rcs, preFunc, sharedTimestamps)
}
return evalRollupNoIncrementalAggregate(qt, funcName, keepMetricNames, rss, rcs, preFunc, sharedTimestamps)
}
var (
rollupMemoryLimiter memoryLimiter
rollupMemoryLimiterOnce sync.Once
)
func getRollupMemoryLimiter() *memoryLimiter {
rollupMemoryLimiterOnce.Do(func() {
rollupMemoryLimiter.MaxSize = uint64(memory.Allowed()) / 2
})
return &rollupMemoryLimiter
}
func maxSilenceInterval() int64 {
d := minStalenessInterval.Milliseconds()
if d <= 0 {
d = 5 * 60 * 1000
}
return d
}
func needSilenceIntervalForRollupFunc(funcName string) bool {
// All the rollup functions, which do not rely on the previous sample
// before the lookbehind window (aka prevValue and realPrevValue), do not need silence interval.
switch strings.ToLower(funcName) {
case "default_rollup":
// The default_rollup implicitly relies on the previous samples in order to fill gaps.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5388
return true
case
"absent_over_time",
"avg_over_time",
"count_eq_over_time",
"count_gt_over_time",
"count_le_over_time",
"count_ne_over_time",
"count_over_time",
"first_over_time",
"histogram_over_time",
"hoeffding_bound_lower",
"hoeffding_bound_upper",
"last_over_time",
"mad_over_time",
"max_over_time",
"median_over_time",
"min_over_time",
"predict_linear",
"present_over_time",
"quantile_over_time",
"quantiles_over_time",
"range_over_time",
"share_gt_over_time",
"share_le_over_time",
"share_eq_over_time",
"stale_samples_over_time",
"stddev_over_time",
"stdvar_over_time",
"sum_over_time",
"tfirst_over_time",
"timestamp",
"timestamp_with_name",
"tlast_over_time",
"tmax_over_time",
"tmin_over_time",
"zscore_over_time":
return false
default:
return true
}
}
func evalRollupWithIncrementalAggregate(qt *querytracer.Tracer, funcName string, keepMetricNames bool,
iafc *incrementalAggrFuncContext, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64) ([]*timeseries, error) {
qt = qt.NewChild("rollup %s() with incremental aggregation %s() over %d series; rollupConfigs=%s", funcName, iafc.ae.Name, rss.Len(), rcs)
defer qt.Done()
var samplesScannedTotal uint64
err := rss.RunParallel(qt, func(rs *netstorage.Result, workerID uint) error {
rs.Values, rs.Timestamps = dropStaleNaNs(funcName, rs.Values, rs.Timestamps)
preFunc(rs.Values, rs.Timestamps)
ts := getTimeseries()
defer putTimeseries(ts)
for _, rc := range rcs {
if tsm := newTimeseriesMap(funcName, keepMetricNames, sharedTimestamps, &rs.MetricName); tsm != nil {
samplesScanned := rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
for _, ts := range tsm.m {
iafc.updateTimeseries(ts, workerID)
}
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
continue
}
ts.Reset()
samplesScanned := doRollupForTimeseries(funcName, keepMetricNames, rc, ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps)
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
iafc.updateTimeseries(ts, workerID)
// ts.Timestamps points to sharedTimestamps. Zero it, so it can be re-used.
ts.Timestamps = nil
ts.denyReuse = false
}
return nil
})
if err != nil {
return nil, err
}
tss := iafc.finalizeTimeseries()
rowsScannedPerQuery.Update(float64(samplesScannedTotal))
qt.Printf("series after aggregation with %s(): %d; samplesScanned=%d", iafc.ae.Name, len(tss), samplesScannedTotal)
return tss, nil
}
func evalRollupNoIncrementalAggregate(qt *querytracer.Tracer, funcName string, keepMetricNames bool, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64) ([]*timeseries, error) {
qt = qt.NewChild("rollup %s() over %d series; rollupConfigs=%s", funcName, rss.Len(), rcs)
defer qt.Done()
var samplesScannedTotal uint64
tsw := getTimeseriesByWorkerID()
seriesByWorkerID := tsw.byWorkerID
seriesLen := rss.Len()
err := rss.RunParallel(qt, func(rs *netstorage.Result, workerID uint) error {
rs.Values, rs.Timestamps = dropStaleNaNs(funcName, rs.Values, rs.Timestamps)
preFunc(rs.Values, rs.Timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(funcName, keepMetricNames, sharedTimestamps, &rs.MetricName); tsm != nil {
samplesScanned := rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
seriesByWorkerID[workerID].tss = tsm.AppendTimeseriesTo(seriesByWorkerID[workerID].tss)
continue
}
var ts timeseries
samplesScanned := doRollupForTimeseries(funcName, keepMetricNames, rc, &ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps)
atomic.AddUint64(&samplesScannedTotal, samplesScanned)
seriesByWorkerID[workerID].tss = append(seriesByWorkerID[workerID].tss, &ts)
}
return nil
})
if err != nil {
return nil, err
}
tss := make([]*timeseries, 0, seriesLen*len(rcs))
for i := range seriesByWorkerID {
tss = append(tss, seriesByWorkerID[i].tss...)
}
putTimeseriesByWorkerID(tsw)
rowsScannedPerQuery.Update(float64(samplesScannedTotal))
qt.Printf("samplesScanned=%d", samplesScannedTotal)
return tss, nil
}
func doRollupForTimeseries(funcName string, keepMetricNames bool, rc *rollupConfig, tsDst *timeseries, mnSrc *storage.MetricName,
valuesSrc []float64, timestampsSrc []int64, sharedTimestamps []int64) uint64 {
tsDst.MetricName.CopyFrom(mnSrc)
if len(rc.TagValue) > 0 {
tsDst.MetricName.AddTag("rollup", rc.TagValue)
}
if !keepMetricNames && !rollupFuncsKeepMetricName[funcName] {
tsDst.MetricName.ResetMetricGroup()
}
var samplesScanned uint64
tsDst.Values, samplesScanned = rc.Do(tsDst.Values[:0], valuesSrc, timestampsSrc)
tsDst.Timestamps = sharedTimestamps
tsDst.denyReuse = true
return samplesScanned
}
type timeseriesWithPadding struct {
tss []*timeseries
// The padding prevents false sharing on widespread platforms with
// 128 mod (cache line size) = 0 .
_ [128 - unsafe.Sizeof([]*timeseries{})%128]byte
}
type timeseriesByWorkerID struct {
byWorkerID []timeseriesWithPadding
}
func (tsw *timeseriesByWorkerID) reset() {
byWorkerID := tsw.byWorkerID
for i := range byWorkerID {
byWorkerID[i].tss = nil
}
}
func getTimeseriesByWorkerID() *timeseriesByWorkerID {
v := timeseriesByWorkerIDPool.Get()
if v == nil {
return &timeseriesByWorkerID{
byWorkerID: make([]timeseriesWithPadding, netstorage.MaxWorkers()),
}
}
return v.(*timeseriesByWorkerID)
}
func putTimeseriesByWorkerID(tsw *timeseriesByWorkerID) {
tsw.reset()
timeseriesByWorkerIDPool.Put(tsw)
}
var timeseriesByWorkerIDPool sync.Pool
var bbPool bytesutil.ByteBufferPool
func evalNumber(ec *EvalConfig, n float64) []*timeseries {
var ts timeseries
ts.denyReuse = true
ts.MetricName.AccountID = ec.AuthToken.AccountID
ts.MetricName.ProjectID = ec.AuthToken.ProjectID
timestamps := ec.getSharedTimestamps()
values := make([]float64, len(timestamps))
for i := range timestamps {
values[i] = n
}
ts.Values = values
ts.Timestamps = timestamps
return []*timeseries{&ts}
}
func evalString(ec *EvalConfig, s string) []*timeseries {
rv := evalNumber(ec, nan)
rv[0].MetricName.MetricGroup = append(rv[0].MetricName.MetricGroup[:0], s...)
return rv
}
func evalTime(ec *EvalConfig) []*timeseries {
rv := evalNumber(ec, nan)
timestamps := rv[0].Timestamps
values := rv[0].Values
for i, ts := range timestamps {
values[i] = float64(ts) / 1e3
}
return rv
}
func mulNoOverflow(a, b int64) int64 {
if math.MaxInt64/b < a {
// Overflow
return math.MaxInt64
}
return a * b
}
func sumNoOverflow(a, b int64) int64 {
if math.MaxInt64-a < b {
// Overflow
return math.MaxInt64
}
return a + b
}
func dropStaleNaNs(funcName string, values []float64, timestamps []int64) ([]float64, []int64) {
if *noStaleMarkers || funcName == "default_rollup" || funcName == "stale_samples_over_time" {
// Do not drop Prometheus staleness marks (aka stale NaNs) for default_rollup() function,
// since it uses them for Prometheus-style staleness detection.
// Do not drop staleness marks for stale_samples_over_time() function, since it needs
// to calculate the number of staleness markers.
return values, timestamps
}
// Remove Prometheus staleness marks, so non-default rollup functions don't hit NaN values.
hasStaleSamples := false
for _, v := range values {
if decimal.IsStaleNaN(v) {
hasStaleSamples = true
break
}
}
if !hasStaleSamples {
// Fast path: values have no Prometheus staleness marks.
return values, timestamps
}
// Slow path: drop Prometheus staleness marks from values.
dstValues := values[:0]
dstTimestamps := timestamps[:0]
for i, v := range values {
if decimal.IsStaleNaN(v) {
continue
}
dstValues = append(dstValues, v)
dstTimestamps = append(dstTimestamps, timestamps[i])
}
return dstValues, dstTimestamps
}