VictoriaMetrics/lib/lrucache/lrucache.go
Aliaksandr Valialkin e6ed92529b
all: remove explicit "xxhash" name when importing github.com/cespare/xxhash/v2 package
This package already has the same name, so there is no need in explicit name
2022-06-21 20:23:32 +03:00

327 lines
7 KiB
Go

package lrucache
import (
"container/heap"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/cespare/xxhash/v2"
)
// Cache caches Entry entries.
//
// Call NewCache() for creating new Cache.
type Cache struct {
shards []*cache
cleanerMustStopCh chan struct{}
cleanerStoppedCh chan struct{}
}
// NewCache creates new cache.
//
// Cache size in bytes is limited by the value returned by getMaxSizeBytes() callback.
// Call MustStop() in order to free up resources occupied by Cache.
func NewCache(getMaxSizeBytes func() int) *Cache {
cpusCount := cgroup.AvailableCPUs()
shardsCount := cgroup.AvailableCPUs()
// Increase the number of shards with the increased number of available CPU cores.
// This should reduce contention on per-shard mutexes.
multiplier := cpusCount
if multiplier > 16 {
multiplier = 16
}
shardsCount *= multiplier
shards := make([]*cache, shardsCount)
getMaxShardBytes := func() int {
n := getMaxSizeBytes()
return n / shardsCount
}
for i := range shards {
shards[i] = newCache(getMaxShardBytes)
}
c := &Cache{
shards: shards,
cleanerMustStopCh: make(chan struct{}),
cleanerStoppedCh: make(chan struct{}),
}
go c.cleaner()
return c
}
// MustStop frees up resources occupied by c.
func (c *Cache) MustStop() {
close(c.cleanerMustStopCh)
<-c.cleanerStoppedCh
}
// GetEntry returns an Entry for the given key k from c.
func (c *Cache) GetEntry(k string) Entry {
idx := uint64(0)
if len(c.shards) > 1 {
h := hashUint64(k)
idx = h % uint64(len(c.shards))
}
shard := c.shards[idx]
return shard.GetEntry(k)
}
// PutEntry puts the given Entry e under the given key k into c.
func (c *Cache) PutEntry(k string, e Entry) {
idx := uint64(0)
if len(c.shards) > 1 {
h := hashUint64(k)
idx = h % uint64(len(c.shards))
}
shard := c.shards[idx]
shard.PutEntry(k, e)
}
// Len returns the number of blocks in the cache c.
func (c *Cache) Len() int {
n := 0
for _, shard := range c.shards {
n += shard.Len()
}
return n
}
// SizeBytes returns an approximate size in bytes of all the blocks stored in the cache c.
func (c *Cache) SizeBytes() int {
n := 0
for _, shard := range c.shards {
n += shard.SizeBytes()
}
return n
}
// SizeMaxBytes returns the max allowed size in bytes for c.
func (c *Cache) SizeMaxBytes() int {
n := 0
for _, shard := range c.shards {
n += shard.SizeMaxBytes()
}
return n
}
// Requests returns the number of requests served by c.
func (c *Cache) Requests() uint64 {
n := uint64(0)
for _, shard := range c.shards {
n += shard.Requests()
}
return n
}
// Misses returns the number of cache misses for c.
func (c *Cache) Misses() uint64 {
n := uint64(0)
for _, shard := range c.shards {
n += shard.Misses()
}
return n
}
func (c *Cache) cleaner() {
ticker := time.NewTicker(53 * time.Second)
defer ticker.Stop()
for {
select {
case <-c.cleanerMustStopCh:
close(c.cleanerStoppedCh)
return
case <-ticker.C:
c.cleanByTimeout()
}
}
}
func (c *Cache) cleanByTimeout() {
for _, shard := range c.shards {
shard.cleanByTimeout()
}
}
type cache struct {
// Atomically updated fields must go first in the struct, so they are properly
// aligned to 8 bytes on 32-bit architectures.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/212
requests uint64
misses uint64
// sizeBytes contains an approximate size for all the blocks stored in the cache.
sizeBytes int64
// getMaxSizeBytes() is a callback, which returns the maximum allowed cache size in bytes.
getMaxSizeBytes func() int
// mu protects all the fields below.
mu sync.Mutex
// m contains cached entries
m map[string]*cacheEntry
// The heap for removing the least recently used entries from m.
lah lastAccessHeap
}
func hashUint64(s string) uint64 {
b := bytesutil.ToUnsafeBytes(s)
return xxhash.Sum64(b)
}
// Entry is an item, which may be cached in the Cache.
type Entry interface {
// SizeBytes must return the approximate size of the given entry in bytes
SizeBytes() int
}
type cacheEntry struct {
// The timestamp in seconds for the last access to the given entry.
lastAccessTime uint64
// heapIdx is the index for the entry in lastAccessHeap.
heapIdx int
// k contains the associated key for the given entry.
k string
// e contains the cached entry.
e Entry
}
func newCache(getMaxSizeBytes func() int) *cache {
var c cache
c.getMaxSizeBytes = getMaxSizeBytes
c.m = make(map[string]*cacheEntry)
return &c
}
func (c *cache) updateSizeBytes(n int) {
atomic.AddInt64(&c.sizeBytes, int64(n))
}
func (c *cache) cleanByTimeout() {
// Delete items accessed more than three minutes ago.
// This time should be enough for repeated queries.
lastAccessTime := fasttime.UnixTimestamp() - 3*60
c.mu.Lock()
defer c.mu.Unlock()
for len(c.lah) > 0 {
if lastAccessTime < c.lah[0].lastAccessTime {
break
}
c.removeLeastRecentlyAccessedItem()
}
}
func (c *cache) GetEntry(k string) Entry {
atomic.AddUint64(&c.requests, 1)
c.mu.Lock()
defer c.mu.Unlock()
ce := c.m[k]
if ce == nil {
atomic.AddUint64(&c.misses, 1)
return nil
}
currentTime := fasttime.UnixTimestamp()
if ce.lastAccessTime != currentTime {
ce.lastAccessTime = currentTime
heap.Fix(&c.lah, ce.heapIdx)
}
return ce.e
}
func (c *cache) PutEntry(k string, e Entry) {
c.mu.Lock()
defer c.mu.Unlock()
ce := c.m[k]
if ce != nil {
// The entry has been already registered by concurrent goroutine.
return
}
ce = &cacheEntry{
lastAccessTime: fasttime.UnixTimestamp(),
k: k,
e: e,
}
heap.Push(&c.lah, ce)
c.m[k] = ce
c.updateSizeBytes(e.SizeBytes())
maxSizeBytes := c.getMaxSizeBytes()
for c.SizeBytes() > maxSizeBytes && len(c.lah) > 0 {
c.removeLeastRecentlyAccessedItem()
}
}
func (c *cache) removeLeastRecentlyAccessedItem() {
ce := c.lah[0]
c.updateSizeBytes(-ce.e.SizeBytes())
delete(c.m, ce.k)
heap.Pop(&c.lah)
}
func (c *cache) Len() int {
c.mu.Lock()
defer c.mu.Unlock()
return len(c.m)
}
func (c *cache) SizeBytes() int {
return int(atomic.LoadInt64(&c.sizeBytes))
}
func (c *cache) SizeMaxBytes() int {
return c.getMaxSizeBytes()
}
func (c *cache) Requests() uint64 {
return atomic.LoadUint64(&c.requests)
}
func (c *cache) Misses() uint64 {
return atomic.LoadUint64(&c.misses)
}
// lastAccessHeap implements heap.Interface
type lastAccessHeap []*cacheEntry
func (lah *lastAccessHeap) Len() int {
return len(*lah)
}
func (lah *lastAccessHeap) Swap(i, j int) {
h := *lah
a := h[i]
b := h[j]
a.heapIdx = j
b.heapIdx = i
h[i] = b
h[j] = a
}
func (lah *lastAccessHeap) Less(i, j int) bool {
h := *lah
return h[i].lastAccessTime < h[j].lastAccessTime
}
func (lah *lastAccessHeap) Push(x interface{}) {
e := x.(*cacheEntry)
h := *lah
e.heapIdx = len(h)
*lah = append(h, e)
}
func (lah *lastAccessHeap) Pop() interface{} {
h := *lah
e := h[len(h)-1]
// Remove the reference to deleted entry, so Go GC could free up memory occupied by the deleted entry.
h[len(h)-1] = nil
*lah = h[:len(h)-1]
return e
}