VictoriaMetrics/vendor/honnef.co/go/tools/code/code.go
Aliaksandr Valialkin 8c2d396e8a make vendor-update
2020-02-26 20:46:24 +02:00

481 lines
12 KiB
Go

// Package code answers structural and type questions about Go code.
package code
import (
"flag"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"strings"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/ast/inspector"
"honnef.co/go/tools/facts"
"honnef.co/go/tools/go/types/typeutil"
"honnef.co/go/tools/ir"
"honnef.co/go/tools/lint"
)
type Positioner interface {
Pos() token.Pos
}
func CallName(call *ir.CallCommon) string {
if call.IsInvoke() {
return ""
}
switch v := call.Value.(type) {
case *ir.Function:
fn, ok := v.Object().(*types.Func)
if !ok {
return ""
}
return lint.FuncName(fn)
case *ir.Builtin:
return v.Name()
}
return ""
}
func IsCallTo(call *ir.CallCommon, name string) bool { return CallName(call) == name }
func IsCallToAny(call *ir.CallCommon, names ...string) bool {
q := CallName(call)
for _, name := range names {
if q == name {
return true
}
}
return false
}
func IsType(T types.Type, name string) bool { return types.TypeString(T, nil) == name }
func FilterDebug(instr []ir.Instruction) []ir.Instruction {
var out []ir.Instruction
for _, ins := range instr {
if _, ok := ins.(*ir.DebugRef); !ok {
out = append(out, ins)
}
}
return out
}
func IsExample(fn *ir.Function) bool {
if !strings.HasPrefix(fn.Name(), "Example") {
return false
}
f := fn.Prog.Fset.File(fn.Pos())
if f == nil {
return false
}
return strings.HasSuffix(f.Name(), "_test.go")
}
func IsPointerLike(T types.Type) bool {
switch T := T.Underlying().(type) {
case *types.Interface, *types.Chan, *types.Map, *types.Signature, *types.Pointer:
return true
case *types.Basic:
return T.Kind() == types.UnsafePointer
}
return false
}
func IsIdent(expr ast.Expr, ident string) bool {
id, ok := expr.(*ast.Ident)
return ok && id.Name == ident
}
// isBlank returns whether id is the blank identifier "_".
// If id == nil, the answer is false.
func IsBlank(id ast.Expr) bool {
ident, _ := id.(*ast.Ident)
return ident != nil && ident.Name == "_"
}
func IsIntLiteral(expr ast.Expr, literal string) bool {
lit, ok := expr.(*ast.BasicLit)
return ok && lit.Kind == token.INT && lit.Value == literal
}
// Deprecated: use IsIntLiteral instead
func IsZero(expr ast.Expr) bool {
return IsIntLiteral(expr, "0")
}
func IsOfType(pass *analysis.Pass, expr ast.Expr, name string) bool {
return IsType(pass.TypesInfo.TypeOf(expr), name)
}
func IsInTest(pass *analysis.Pass, node Positioner) bool {
// FIXME(dh): this doesn't work for global variables with
// initializers
f := pass.Fset.File(node.Pos())
return f != nil && strings.HasSuffix(f.Name(), "_test.go")
}
// IsMain reports whether the package being processed is a package
// main.
func IsMain(pass *analysis.Pass) bool {
return pass.Pkg.Name() == "main"
}
// IsMainLike reports whether the package being processed is a
// main-like package. A main-like package is a package that is
// package main, or that is intended to be used by a tool framework
// such as cobra to implement a command.
//
// Note that this function errs on the side of false positives; it may
// return true for packages that aren't main-like. IsMainLike is
// intended for analyses that wish to suppress diagnostics for
// main-like packages to avoid false positives.
func IsMainLike(pass *analysis.Pass) bool {
if pass.Pkg.Name() == "main" {
return true
}
for _, imp := range pass.Pkg.Imports() {
if imp.Path() == "github.com/spf13/cobra" {
return true
}
}
return false
}
func SelectorName(pass *analysis.Pass, expr *ast.SelectorExpr) string {
info := pass.TypesInfo
sel := info.Selections[expr]
if sel == nil {
if x, ok := expr.X.(*ast.Ident); ok {
pkg, ok := info.ObjectOf(x).(*types.PkgName)
if !ok {
// This shouldn't happen
return fmt.Sprintf("%s.%s", x.Name, expr.Sel.Name)
}
return fmt.Sprintf("%s.%s", pkg.Imported().Path(), expr.Sel.Name)
}
panic(fmt.Sprintf("unsupported selector: %v", expr))
}
return fmt.Sprintf("(%s).%s", sel.Recv(), sel.Obj().Name())
}
func IsNil(pass *analysis.Pass, expr ast.Expr) bool {
return pass.TypesInfo.Types[expr].IsNil()
}
func BoolConst(pass *analysis.Pass, expr ast.Expr) bool {
val := pass.TypesInfo.ObjectOf(expr.(*ast.Ident)).(*types.Const).Val()
return constant.BoolVal(val)
}
func IsBoolConst(pass *analysis.Pass, expr ast.Expr) bool {
// We explicitly don't support typed bools because more often than
// not, custom bool types are used as binary enums and the
// explicit comparison is desired.
ident, ok := expr.(*ast.Ident)
if !ok {
return false
}
obj := pass.TypesInfo.ObjectOf(ident)
c, ok := obj.(*types.Const)
if !ok {
return false
}
basic, ok := c.Type().(*types.Basic)
if !ok {
return false
}
if basic.Kind() != types.UntypedBool && basic.Kind() != types.Bool {
return false
}
return true
}
func ExprToInt(pass *analysis.Pass, expr ast.Expr) (int64, bool) {
tv := pass.TypesInfo.Types[expr]
if tv.Value == nil {
return 0, false
}
if tv.Value.Kind() != constant.Int {
return 0, false
}
return constant.Int64Val(tv.Value)
}
func ExprToString(pass *analysis.Pass, expr ast.Expr) (string, bool) {
val := pass.TypesInfo.Types[expr].Value
if val == nil {
return "", false
}
if val.Kind() != constant.String {
return "", false
}
return constant.StringVal(val), true
}
// Dereference returns a pointer's element type; otherwise it returns
// T.
func Dereference(T types.Type) types.Type {
if p, ok := T.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return T
}
// DereferenceR returns a pointer's element type; otherwise it returns
// T. If the element type is itself a pointer, DereferenceR will be
// applied recursively.
func DereferenceR(T types.Type) types.Type {
if p, ok := T.Underlying().(*types.Pointer); ok {
return DereferenceR(p.Elem())
}
return T
}
func CallNameAST(pass *analysis.Pass, call *ast.CallExpr) string {
switch fun := astutil.Unparen(call.Fun).(type) {
case *ast.SelectorExpr:
fn, ok := pass.TypesInfo.ObjectOf(fun.Sel).(*types.Func)
if !ok {
return ""
}
return lint.FuncName(fn)
case *ast.Ident:
obj := pass.TypesInfo.ObjectOf(fun)
switch obj := obj.(type) {
case *types.Func:
return lint.FuncName(obj)
case *types.Builtin:
return obj.Name()
default:
return ""
}
default:
return ""
}
}
func IsCallToAST(pass *analysis.Pass, node ast.Node, name string) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return false
}
return CallNameAST(pass, call) == name
}
func IsCallToAnyAST(pass *analysis.Pass, node ast.Node, names ...string) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return false
}
q := CallNameAST(pass, call)
for _, name := range names {
if q == name {
return true
}
}
return false
}
func Preamble(f *ast.File) string {
cutoff := f.Package
if f.Doc != nil {
cutoff = f.Doc.Pos()
}
var out []string
for _, cmt := range f.Comments {
if cmt.Pos() >= cutoff {
break
}
out = append(out, cmt.Text())
}
return strings.Join(out, "\n")
}
func GroupSpecs(fset *token.FileSet, specs []ast.Spec) [][]ast.Spec {
if len(specs) == 0 {
return nil
}
groups := make([][]ast.Spec, 1)
groups[0] = append(groups[0], specs[0])
for _, spec := range specs[1:] {
g := groups[len(groups)-1]
if fset.PositionFor(spec.Pos(), false).Line-1 !=
fset.PositionFor(g[len(g)-1].End(), false).Line {
groups = append(groups, nil)
}
groups[len(groups)-1] = append(groups[len(groups)-1], spec)
}
return groups
}
func IsObject(obj types.Object, name string) bool {
var path string
if pkg := obj.Pkg(); pkg != nil {
path = pkg.Path() + "."
}
return path+obj.Name() == name
}
type Field struct {
Var *types.Var
Tag string
Path []int
}
// FlattenFields recursively flattens T and embedded structs,
// returning a list of fields. If multiple fields with the same name
// exist, all will be returned.
func FlattenFields(T *types.Struct) []Field {
return flattenFields(T, nil, nil)
}
func flattenFields(T *types.Struct, path []int, seen map[types.Type]bool) []Field {
if seen == nil {
seen = map[types.Type]bool{}
}
if seen[T] {
return nil
}
seen[T] = true
var out []Field
for i := 0; i < T.NumFields(); i++ {
field := T.Field(i)
tag := T.Tag(i)
np := append(path[:len(path):len(path)], i)
if field.Anonymous() {
if s, ok := Dereference(field.Type()).Underlying().(*types.Struct); ok {
out = append(out, flattenFields(s, np, seen)...)
}
} else {
out = append(out, Field{field, tag, np})
}
}
return out
}
func File(pass *analysis.Pass, node Positioner) *ast.File {
m := pass.ResultOf[facts.TokenFile].(map[*token.File]*ast.File)
return m[pass.Fset.File(node.Pos())]
}
// IsGenerated reports whether pos is in a generated file, It ignores
// //line directives.
func IsGenerated(pass *analysis.Pass, pos token.Pos) bool {
_, ok := Generator(pass, pos)
return ok
}
// Generator returns the generator that generated the file containing
// pos. It ignores //line directives.
func Generator(pass *analysis.Pass, pos token.Pos) (facts.Generator, bool) {
file := pass.Fset.PositionFor(pos, false).Filename
m := pass.ResultOf[facts.Generated].(map[string]facts.Generator)
g, ok := m[file]
return g, ok
}
// MayHaveSideEffects reports whether expr may have side effects. If
// the purity argument is nil, this function implements a purely
// syntactic check, meaning that any function call may have side
// effects, regardless of the called function's body. Otherwise,
// purity will be consulted to determine the purity of function calls.
func MayHaveSideEffects(pass *analysis.Pass, expr ast.Expr, purity facts.PurityResult) bool {
switch expr := expr.(type) {
case *ast.BadExpr:
return true
case *ast.Ellipsis:
return MayHaveSideEffects(pass, expr.Elt, purity)
case *ast.FuncLit:
// the literal itself cannot have side ffects, only calling it
// might, which is handled by CallExpr.
return false
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
// types cannot have side effects
return false
case *ast.BasicLit:
return false
case *ast.BinaryExpr:
return MayHaveSideEffects(pass, expr.X, purity) || MayHaveSideEffects(pass, expr.Y, purity)
case *ast.CallExpr:
if purity == nil {
return true
}
switch obj := typeutil.Callee(pass.TypesInfo, expr).(type) {
case *types.Func:
if _, ok := purity[obj]; !ok {
return true
}
case *types.Builtin:
switch obj.Name() {
case "len", "cap":
default:
return true
}
default:
return true
}
for _, arg := range expr.Args {
if MayHaveSideEffects(pass, arg, purity) {
return true
}
}
return false
case *ast.CompositeLit:
if MayHaveSideEffects(pass, expr.Type, purity) {
return true
}
for _, elt := range expr.Elts {
if MayHaveSideEffects(pass, elt, purity) {
return true
}
}
return false
case *ast.Ident:
return false
case *ast.IndexExpr:
return MayHaveSideEffects(pass, expr.X, purity) || MayHaveSideEffects(pass, expr.Index, purity)
case *ast.KeyValueExpr:
return MayHaveSideEffects(pass, expr.Key, purity) || MayHaveSideEffects(pass, expr.Value, purity)
case *ast.SelectorExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.SliceExpr:
return MayHaveSideEffects(pass, expr.X, purity) ||
MayHaveSideEffects(pass, expr.Low, purity) ||
MayHaveSideEffects(pass, expr.High, purity) ||
MayHaveSideEffects(pass, expr.Max, purity)
case *ast.StarExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.TypeAssertExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.UnaryExpr:
if MayHaveSideEffects(pass, expr.X, purity) {
return true
}
return expr.Op == token.ARROW
case *ast.ParenExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case nil:
return false
default:
panic(fmt.Sprintf("internal error: unhandled type %T", expr))
}
}
func IsGoVersion(pass *analysis.Pass, minor int) bool {
version := pass.Analyzer.Flags.Lookup("go").Value.(flag.Getter).Get().(int)
return version >= minor
}
func Preorder(pass *analysis.Pass, fn func(ast.Node), types ...ast.Node) {
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder(types, fn)
}