VictoriaMetrics/lib/logstorage/pipes.go
Aliaksandr Valialkin 75914210ec
wip
2024-04-27 22:08:03 +02:00

975 lines
24 KiB
Go

package logstorage
import (
"fmt"
"slices"
"strconv"
"strings"
"sync/atomic"
"unsafe"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
)
type pipe interface {
// String returns string representation of the pipe.
String() string
// newPipeProcessor must return new pipeProcessor for the given ppBase.
//
// workersCount is the number of goroutine workers, which will call writeBlock() method.
//
// If stopCh is closed, the returned pipeProcessor must stop performing CPU-intensive tasks which take more than a few milliseconds.
// It is OK to continue processing pipeProcessor calls if they take less than a few milliseconds.
//
// The returned pipeProcessor may call cancel() at any time in order to notify worker goroutines to stop sending new data to pipeProcessor.
newPipeProcessor(workersCount int, stopCh <-chan struct{}, cancel func(), ppBase pipeProcessor) pipeProcessor
}
// pipeProcessor must process a single pipe.
type pipeProcessor interface {
// writeBlock must write the given block of data to the given pipeProcessor.
//
// writeBlock is called concurrently from worker goroutines.
// The workerID is the id of the worker goroutine, which calls the writeBlock.
// It is in the range 0 ... workersCount-1 .
//
// It is forbidden to hold references to columns after returning from writeBlock, since the caller re-uses columns.
//
// If any error occurs at writeBlock, then cancel() must be called by pipeProcessor in order to notify worker goroutines
// to stop sending new data. The occurred error must be returned from flush().
//
// cancel() may be called also when the pipeProcessor decides to stop accepting new data, even if there is no any error.
writeBlock(workerID uint, timestamps []int64, columns []BlockColumn)
// flush must flush all the data accumulated in the pipeProcessor to the base pipeProcessor.
//
// flush is called after all the worker goroutines are stopped.
//
// It is guaranteed that flush() is called for every pipeProcessor returned from pipe.newPipeProcessor().
flush() error
}
type defaultPipeProcessor func(workerID uint, timestamps []int64, columns []BlockColumn)
func newDefaultPipeProcessor(writeBlock func(workerID uint, timestamps []int64, columns []BlockColumn)) pipeProcessor {
return defaultPipeProcessor(writeBlock)
}
func (dpp defaultPipeProcessor) writeBlock(workerID uint, timestamps []int64, columns []BlockColumn) {
dpp(workerID, timestamps, columns)
}
func (dpp defaultPipeProcessor) flush() error {
return nil
}
func parsePipes(lex *lexer) ([]pipe, error) {
var pipes []pipe
for !lex.isKeyword(")", "") {
if !lex.isKeyword("|") {
return nil, fmt.Errorf("expecting '|'")
}
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing token after '|'")
}
switch {
case lex.isKeyword("fields"):
fp, err := parseFieldsPipe(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'fields' pipe: %w", err)
}
pipes = append(pipes, fp)
case lex.isKeyword("stats"):
sp, err := parseStatsPipe(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'stats' pipe: %w", err)
}
pipes = append(pipes, sp)
case lex.isKeyword("head"):
hp, err := parseHeadPipe(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'head' pipe: %w", err)
}
pipes = append(pipes, hp)
case lex.isKeyword("skip"):
sp, err := parseSkipPipe(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'skip' pipe: %w", err)
}
pipes = append(pipes, sp)
default:
return nil, fmt.Errorf("unexpected pipe %q", lex.token)
}
}
return pipes, nil
}
type fieldsPipe struct {
// fields contains list of fields to fetch
fields []string
}
func (fp *fieldsPipe) String() string {
if len(fp.fields) == 0 {
logger.Panicf("BUG: fieldsPipe must contain at least a single field")
}
return "fields " + fieldNamesString(fp.fields)
}
func (fp *fieldsPipe) newPipeProcessor(_ int, _ <-chan struct{}, _ func(), ppBase pipeProcessor) pipeProcessor {
return &fieldsPipeProcessor{
fp: fp,
ppBase: ppBase,
}
}
type fieldsPipeProcessor struct {
fp *fieldsPipe
ppBase pipeProcessor
}
func (fpp *fieldsPipeProcessor) writeBlock(workerID uint, timestamps []int64, columns []BlockColumn) {
if slices.Contains(fpp.fp.fields, "*") || areSameBlockColumns(columns, fpp.fp.fields) {
// Fast path - there is no need in additional transformations before writing the block to ppBase.
fpp.ppBase.writeBlock(workerID, timestamps, columns)
return
}
// Slow path - construct columns for fpp.fp.fields before writing them to ppBase.
brs := getBlockRows()
cs := brs.cs
for _, f := range fpp.fp.fields {
values := getValuesForBlockColumn(columns, f, len(timestamps))
cs = append(cs, BlockColumn{
Name: f,
Values: values,
})
}
fpp.ppBase.writeBlock(workerID, timestamps, cs)
brs.cs = cs
putBlockRows(brs)
}
func (fpp *fieldsPipeProcessor) flush() error {
return nil
}
func parseFieldsPipe(lex *lexer) (*fieldsPipe, error) {
var fields []string
for {
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing field name")
}
if lex.isKeyword(",") {
return nil, fmt.Errorf("unexpected ','; expecting field name")
}
field, err := parseFieldName(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse field name: %w", err)
}
fields = append(fields, field)
switch {
case lex.isKeyword("|", ")", ""):
fp := &fieldsPipe{
fields: fields,
}
return fp, nil
case lex.isKeyword(","):
default:
return nil, fmt.Errorf("unexpected token: %q; expecting ',', '|' or ')'", lex.token)
}
}
}
type statsPipe struct {
byFields []string
funcs []statsFunc
}
type statsFunc interface {
// String returns string representation of statsFunc
String() string
// neededFields returns the needed fields for calculating the given stats
neededFields() []string
// newStatsFuncProcessor must create new statsFuncProcessor for calculating stats for the given statsFunc.
newStatsFuncProcessor() statsFuncProcessor
}
// statsFuncProcessor must process stats for some statsFunc.
//
// All the statsFuncProcessor methods are called from a single goroutine at a time,
// so there is no need in the internal synchronization.
type statsFuncProcessor interface {
// updateStatsForAllRows must update statsFuncProcessor stats from all the rows.
updateStatsForAllRows(timestamps []int64, columns []BlockColumn)
// updateStatsForRow must update statsFuncProcessor stats from the row at rowIndex.
updateStatsForRow(timestamps []int64, columns []BlockColumn, rowIndex int)
// mergeState must merge sfp state into statsFuncProcessor state.
mergeState(sfp statsFuncProcessor)
// finalizeStats must return the collected stats from statsFuncProcessor.
finalizeStats() (name, value string)
}
func (sp *statsPipe) String() string {
s := "stats "
if len(sp.byFields) > 0 {
s += "by (" + fieldNamesString(sp.byFields) + ") "
}
if len(sp.funcs) == 0 {
logger.Panicf("BUG: statsPipe must contain at least a single statsFunc")
}
a := make([]string, len(sp.funcs))
for i, f := range sp.funcs {
a[i] = f.String()
}
s += strings.Join(a, ", ")
return s
}
func (sp *statsPipe) newPipeProcessor(workersCount int, stopCh <-chan struct{}, cancel func(), ppBase pipeProcessor) pipeProcessor {
shards := make([]statsPipeProcessorShard, workersCount)
for i := range shards {
shard := &shards[i]
shard.m = make(map[string]*statsPipeGroup)
shard.funcs = sp.funcs
}
return &statsPipeProcessor{
sp: sp,
stopCh: stopCh,
cancel: cancel,
ppBase: ppBase,
shards: shards,
}
}
type statsPipeProcessor struct {
sp *statsPipe
stopCh <-chan struct{}
cancel func()
ppBase pipeProcessor
shards []statsPipeProcessorShard
}
type statsPipeProcessorShard struct {
statsPipeProcessorShardNopad
// The padding prevents false sharing on widespread platforms with 128 mod (cache line size) = 0 .
_ [128 - unsafe.Sizeof(statsPipeProcessorShardNopad{})%128]byte
}
type statsPipeProcessorShardNopad struct {
m map[string]*statsPipeGroup
funcs []statsFunc
columnIdxs []int
keyBuf []byte
}
func (shard *statsPipeProcessorShard) getStatsPipeGroup(key []byte) *statsPipeGroup {
spg := shard.m[string(key)]
if spg != nil {
return spg
}
sfps := make([]statsFuncProcessor, len(shard.funcs))
for i, f := range shard.funcs {
sfps[i] = f.newStatsFuncProcessor()
}
spg = &statsPipeGroup{
sfps: sfps,
}
shard.m[string(key)] = spg
return spg
}
type statsPipeGroup struct {
sfps []statsFuncProcessor
}
func (spp *statsPipeProcessor) writeBlock(workerID uint, timestamps []int64, columns []BlockColumn) {
shard := &spp.shards[workerID]
if len(spp.sp.byFields) == 0 {
// Fast path - pass all the rows to a single group
spg := shard.getStatsPipeGroup(nil)
for _, sfp := range spg.sfps {
sfp.updateStatsForAllRows(timestamps, columns)
}
return
}
// Slow path - update per-row stats
// Pre-calculate column indexes for byFields in order to speed up building group key in the loop below.
shard.columnIdxs = appendBlockColumnIndexes(shard.columnIdxs[:0], columns, spp.sp.byFields)
columnIdxs := shard.columnIdxs
keyBuf := shard.keyBuf
for i := range timestamps {
// Construct key for the by (...) fields
keyBuf = keyBuf[:0]
for _, idx := range columnIdxs {
v := ""
if idx >= 0 {
v = columns[idx].Values[i]
}
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(v))
}
spg := shard.getStatsPipeGroup(keyBuf)
for _, sfp := range spg.sfps {
sfp.updateStatsForRow(timestamps, columns, i)
}
}
shard.keyBuf = keyBuf
}
func (spp *statsPipeProcessor) flush() error {
// Merge states across shards
shards := spp.shards
m := shards[0].m
shards = shards[1:]
for i := range shards {
shard := &shards[i]
for key, spg := range shard.m {
// shard.m may be quite big, so this loop can take a lot of time and CPU.
// Stop processing data as soon as stopCh is closed without wasting CPU time.
select {
case <-spp.stopCh:
return nil
default:
}
spgBase := m[key]
if spgBase == nil {
m[key] = spg
} else {
for i, sfp := range spgBase.sfps {
sfp.mergeState(spg.sfps[i])
}
}
}
}
// Write per-group states to ppBase
byFields := spp.sp.byFields
if len(byFields) == 0 && len(m) == 0 {
// Special case - zero matching rows.
_ = shards[0].getStatsPipeGroup(nil)
m = shards[0].m
}
var values []string
var columns []BlockColumn
for key, spg := range m {
// m may be quite big, so this loop can take a lot of time and CPU.
// Stop processing data as soon as stopCh is closed without wasting CPU time.
select {
case <-spp.stopCh:
return nil
default:
}
// Unmarshal values for byFields from key.
values = values[:0]
keyBuf := bytesutil.ToUnsafeBytes(key)
for len(keyBuf) > 0 {
tail, v, err := encoding.UnmarshalBytes(keyBuf)
if err != nil {
logger.Panicf("BUG: cannot unmarshal value from keyBuf=%q: %w", keyBuf, err)
}
values = append(values, bytesutil.ToUnsafeString(v))
keyBuf = tail
}
if len(values) != len(byFields) {
logger.Panicf("BUG: unexpected number of values decoded from keyBuf; got %d; want %d", len(values), len(byFields))
}
// construct columns for byFields
columns = columns[:0]
for i, f := range byFields {
columns = append(columns, BlockColumn{
Name: f,
Values: values[i : i+1],
})
}
// construct columns for stats functions
for _, sfp := range spg.sfps {
name, value := sfp.finalizeStats()
columns = append(columns, BlockColumn{
Name: name,
Values: []string{value},
})
}
spp.ppBase.writeBlock(0, []int64{0}, columns)
}
return nil
}
func (sp *statsPipe) neededFields() []string {
var neededFields []string
m := make(map[string]struct{})
updateNeededFields := func(fields []string) {
for _, field := range fields {
if _, ok := m[field]; !ok {
m[field] = struct{}{}
neededFields = append(neededFields, field)
}
}
}
updateNeededFields(sp.byFields)
for _, f := range sp.funcs {
fields := f.neededFields()
updateNeededFields(fields)
}
return neededFields
}
func parseStatsPipe(lex *lexer) (*statsPipe, error) {
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing stats config")
}
var sp statsPipe
if lex.isKeyword("by") {
lex.nextToken()
fields, err := parseFieldNamesInParens(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'by': %w", err)
}
sp.byFields = fields
}
var funcs []statsFunc
for {
sf, err := parseStatsFunc(lex)
if err != nil {
return nil, err
}
funcs = append(funcs, sf)
if lex.isKeyword("|", ")", "") {
sp.funcs = funcs
return &sp, nil
}
if !lex.isKeyword(",") {
return nil, fmt.Errorf("unexpected token %q; want ',', '|' or ')'", lex.token)
}
lex.nextToken()
}
}
func parseStatsFunc(lex *lexer) (statsFunc, error) {
switch {
case lex.isKeyword("count"):
sfc, err := parseStatsFuncCount(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'count' func: %w", err)
}
return sfc, nil
case lex.isKeyword("uniq"):
sfu, err := parseStatsFuncUniq(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'uniq' func: %w", err)
}
return sfu, nil
default:
return nil, fmt.Errorf("unknown stats func %q", lex.token)
}
}
type statsFuncCount struct {
fields []string
resultName string
}
func (sfc *statsFuncCount) String() string {
return "count(" + fieldNamesString(sfc.fields) + ") as " + quoteTokenIfNeeded(sfc.resultName)
}
func (sfc *statsFuncCount) neededFields() []string {
return getFieldsIgnoreStar(sfc.fields)
}
func (sfc *statsFuncCount) newStatsFuncProcessor() statsFuncProcessor {
return &statsFuncCountProcessor{
sfc: sfc,
}
}
type statsFuncCountProcessor struct {
sfc *statsFuncCount
rowsCount uint64
}
func (sfcp *statsFuncCountProcessor) updateStatsForAllRows(timestamps []int64, columns []BlockColumn) {
fields := sfcp.sfc.fields
if len(fields) == 0 || slices.Contains(fields, "*") {
// Fast path - count all the columns.
sfcp.rowsCount += uint64(len(timestamps))
return
}
// Slow path - count rows containing at least a single non-empty value for the fields enumerated inside count().
bm := getFilterBitmap(len(timestamps))
bm.setBits()
for _, f := range fields {
if idx := getBlockColumnIndex(columns, f); idx >= 0 {
values := columns[idx].Values
bm.forEachSetBit(func(i int) bool {
return values[i] == ""
})
}
}
emptyValues := 0
bm.forEachSetBit(func(i int) bool {
emptyValues++
return true
})
sfcp.rowsCount += uint64(len(timestamps) - emptyValues)
}
func (sfcp *statsFuncCountProcessor) updateStatsForRow(_ []int64, columns []BlockColumn, rowIdx int) {
fields := sfcp.sfc.fields
if len(fields) == 0 || slices.Contains(fields, "*") {
// Fast path - count the given column
sfcp.rowsCount++
return
}
// Slow path - count the row at rowIdx if at least a single field enumerated inside count() is non-empty
for _, f := range fields {
if idx := getBlockColumnIndex(columns, f); idx >= 0 && columns[idx].Values[rowIdx] != "" {
sfcp.rowsCount++
return
}
}
}
func (sfcp *statsFuncCountProcessor) mergeState(sfp statsFuncProcessor) {
src := sfp.(*statsFuncCountProcessor)
sfcp.rowsCount += src.rowsCount
}
func (sfcp *statsFuncCountProcessor) finalizeStats() (string, string) {
value := strconv.FormatUint(sfcp.rowsCount, 10)
return sfcp.sfc.resultName, value
}
type statsFuncUniq struct {
fields []string
resultName string
}
func (sfu *statsFuncUniq) String() string {
return "uniq(" + fieldNamesString(sfu.fields) + ") as " + quoteTokenIfNeeded(sfu.resultName)
}
func (sfu *statsFuncUniq) neededFields() []string {
return sfu.fields
}
func (sfu *statsFuncUniq) newStatsFuncProcessor() statsFuncProcessor {
return &statsFuncUniqProcessor{
sfu: sfu,
m: make(map[string]struct{}),
}
}
type statsFuncUniqProcessor struct {
sfu *statsFuncUniq
m map[string]struct{}
columnIdxs []int
keyBuf []byte
}
func (sfup *statsFuncUniqProcessor) updateStatsForAllRows(timestamps []int64, columns []BlockColumn) {
fields := sfup.sfu.fields
m := sfup.m
if len(fields) == 1 {
// Fast path for a single column
if idx := getBlockColumnIndex(columns, fields[0]); idx >= 0 {
for _, v := range columns[idx].Values {
if v == "" {
// Do not count empty values
continue
}
if _, ok := m[v]; !ok {
vCopy := strings.Clone(v)
m[vCopy] = struct{}{}
}
}
}
return
}
// Slow path for multiple columns.
// Pre-calculate column indexes for byFields in order to speed up building group key in the loop below.
sfup.columnIdxs = appendBlockColumnIndexes(sfup.columnIdxs[:0], columns, fields)
columnIdxs := sfup.columnIdxs
keyBuf := sfup.keyBuf
for i := range timestamps {
allEmptyValues := true
keyBuf = keyBuf[:0]
for _, idx := range columnIdxs {
v := ""
if idx >= 0 {
v = columns[idx].Values[i]
}
if v != "" {
allEmptyValues = false
}
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(v))
}
if allEmptyValues {
// Do not count empty values
continue
}
if _, ok := m[string(keyBuf)]; !ok {
m[string(keyBuf)] = struct{}{}
}
}
sfup.keyBuf = keyBuf
}
func (sfup *statsFuncUniqProcessor) updateStatsForRow(timestamps []int64, columns []BlockColumn, rowIdx int) {
fields := sfup.sfu.fields
m := sfup.m
if len(fields) == 1 {
// Fast path for a single column
if idx := getBlockColumnIndex(columns, fields[0]); idx >= 0 {
v := columns[idx].Values[rowIdx]
if v == "" {
// Do not count empty values
return
}
if _, ok := m[v]; !ok {
vCopy := strings.Clone(v)
m[vCopy] = struct{}{}
}
}
return
}
// Slow path for multiple columns.
allEmptyValues := true
keyBuf := sfup.keyBuf
for _, f := range fields {
v := ""
if idx := getBlockColumnIndex(columns, f); idx >= 0 {
v = columns[idx].Values[rowIdx]
}
if v != "" {
allEmptyValues = false
}
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(v))
}
sfup.keyBuf = keyBuf
if allEmptyValues {
// Do not count empty values
return
}
if _, ok := m[string(keyBuf)]; !ok {
m[string(keyBuf)] = struct{}{}
}
}
func (sfup *statsFuncUniqProcessor) mergeState(sfp statsFuncProcessor) {
src := sfp.(*statsFuncUniqProcessor)
m := sfup.m
for k := range src.m {
m[k] = struct{}{}
}
}
func (sfup *statsFuncUniqProcessor) finalizeStats() (string, string) {
n := uint64(len(sfup.m))
value := strconv.FormatUint(n, 10)
return sfup.sfu.resultName, value
}
func parseStatsFuncUniq(lex *lexer) (*statsFuncUniq, error) {
lex.nextToken()
fields, err := parseFieldNamesInParens(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'uniq' args: %w", err)
}
if len(fields) == 0 {
return nil, fmt.Errorf("'uniq' must contain at least a single arg")
}
resultName, err := parseResultName(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse result name: %w", err)
}
sfu := &statsFuncUniq{
fields: fields,
resultName: resultName,
}
return sfu, nil
}
func parseStatsFuncCount(lex *lexer) (*statsFuncCount, error) {
lex.nextToken()
fields, err := parseFieldNamesInParens(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'count' args: %w", err)
}
resultName, err := parseResultName(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse result name: %w", err)
}
sfc := &statsFuncCount{
fields: fields,
resultName: resultName,
}
return sfc, nil
}
func parseResultName(lex *lexer) (string, error) {
if lex.isKeyword("as") {
if !lex.mustNextToken() {
return "", fmt.Errorf("missing token after 'as' keyword")
}
}
resultName, err := parseFieldName(lex)
if err != nil {
return "", fmt.Errorf("cannot parse 'as' field name: %w", err)
}
return resultName, nil
}
type headPipe struct {
n uint64
}
func (hp *headPipe) String() string {
return fmt.Sprintf("head %d", hp.n)
}
func (hp *headPipe) newPipeProcessor(_ int, _ <-chan struct{}, cancel func(), ppBase pipeProcessor) pipeProcessor {
if hp.n == 0 {
// Special case - notify the caller to stop writing data to the returned headPipeProcessor
cancel()
}
return &headPipeProcessor{
hp: hp,
cancel: cancel,
ppBase: ppBase,
}
}
type headPipeProcessor struct {
hp *headPipe
cancel func()
ppBase pipeProcessor
rowsWritten atomic.Uint64
}
func (hpp *headPipeProcessor) writeBlock(workerID uint, timestamps []int64, columns []BlockColumn) {
rowsWritten := hpp.rowsWritten.Add(uint64(len(timestamps)))
if rowsWritten <= hpp.hp.n {
// Fast path - write all the rows to ppBase.
hpp.ppBase.writeBlock(workerID, timestamps, columns)
return
}
// Slow path - overflow. Write the remaining rows if needed.
rowsWritten -= uint64(len(timestamps))
if rowsWritten >= hpp.hp.n {
// Nothing to write. There is no need in cancel() call, since it has been called by another goroutine.
return
}
// Write remaining rows.
rowsRemaining := hpp.hp.n - rowsWritten
cs := make([]BlockColumn, len(columns))
for i, c := range columns {
cDst := &cs[i]
cDst.Name = c.Name
cDst.Values = c.Values[:rowsRemaining]
}
timestamps = timestamps[:rowsRemaining]
hpp.ppBase.writeBlock(workerID, timestamps, cs)
// Notify the caller that it should stop passing more data to writeBlock().
hpp.cancel()
}
func (hpp *headPipeProcessor) flush() error {
return nil
}
func parseHeadPipe(lex *lexer) (*headPipe, error) {
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing the number of head rows to return")
}
n, err := parseUint(lex.token)
if err != nil {
return nil, fmt.Errorf("cannot parse the number of head rows to return %q: %w", lex.token, err)
}
lex.nextToken()
hp := &headPipe{
n: n,
}
return hp, nil
}
type skipPipe struct {
n uint64
}
func (sp *skipPipe) String() string {
return fmt.Sprintf("skip %d", sp.n)
}
func (sp *skipPipe) newPipeProcessor(workersCount int, _ <-chan struct{}, _ func(), ppBase pipeProcessor) pipeProcessor {
return &skipPipeProcessor{
sp: sp,
ppBase: ppBase,
}
}
type skipPipeProcessor struct {
sp *skipPipe
ppBase pipeProcessor
rowsSkipped atomic.Uint64
}
func (spp *skipPipeProcessor) writeBlock(workerID uint, timestamps []int64, columns []BlockColumn) {
rowsSkipped := spp.rowsSkipped.Add(uint64(len(timestamps)))
if rowsSkipped <= spp.sp.n {
return
}
rowsSkipped -= uint64(len(timestamps))
if rowsSkipped >= spp.sp.n {
spp.ppBase.writeBlock(workerID, timestamps, columns)
return
}
rowsRemaining := spp.sp.n - rowsSkipped
cs := make([]BlockColumn, len(columns))
for i, c := range columns {
cDst := &cs[i]
cDst.Name = c.Name
cDst.Values = c.Values[rowsRemaining:]
}
timestamps = timestamps[rowsRemaining:]
spp.ppBase.writeBlock(workerID, timestamps, cs)
}
func (spp *skipPipeProcessor) flush() error {
return nil
}
func parseSkipPipe(lex *lexer) (*skipPipe, error) {
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing the number of rows to skip")
}
n, err := parseUint(lex.token)
if err != nil {
return nil, fmt.Errorf("cannot parse the number of rows to skip %q: %w", lex.token, err)
}
lex.nextToken()
sp := &skipPipe{
n: n,
}
return sp, nil
}
func parseFieldNamesInParens(lex *lexer) ([]string, error) {
if !lex.isKeyword("(") {
return nil, fmt.Errorf("missing `(`")
}
var fields []string
for {
if !lex.mustNextToken() {
return nil, fmt.Errorf("missing field name or ')'")
}
if lex.isKeyword(")") {
lex.nextToken()
return fields, nil
}
if lex.isKeyword(",") {
return nil, fmt.Errorf("unexpected `,`")
}
field, err := parseFieldName(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse field name: %w", err)
}
fields = append(fields, field)
switch {
case lex.isKeyword(")"):
lex.nextToken()
return fields, nil
case lex.isKeyword(","):
default:
return nil, fmt.Errorf("unexpected token: %q; expecting ',' or ')'", lex.token)
}
}
}
func parseFieldName(lex *lexer) (string, error) {
if lex.isKeyword(",", "(", ")", "[", "]", "|", "") {
return "", fmt.Errorf("unexpected token: %q", lex.token)
}
token := getCompoundToken(lex)
return token, nil
}
func fieldNamesString(fields []string) string {
a := make([]string, len(fields))
for i, f := range fields {
if f != "*" {
f = quoteTokenIfNeeded(f)
}
a[i] = f
}
return strings.Join(a, ", ")
}
func getFieldsIgnoreStar(fields []string) []string {
var result []string
for _, f := range fields {
if f != "*" {
result = append(result, f)
}
}
return result
}
func appendBlockColumnIndexes(dst []int, columns []BlockColumn, fields []string) []int {
for _, f := range fields {
idx := getBlockColumnIndex(columns, f)
dst = append(dst, idx)
}
return dst
}