VictoriaMetrics/app/vmalert/recording_test.go
Roman Khavronenko 6ae4f3526b
vmalert: add experimental feature of storing Rule's evaluation state (#3106)
vmalert: add experimental feature of storing Rule's evaluation state

The new feature keeps last 20 state changes of each Rule
in memory. The state are available for view on the Rule's
view page. The page can be opened by clicking on `Details`
link next to Rule's name on the `/groups` page.

States change suppose to help in investigating cases when Rule
doesn't generate alerts or records.

Signed-off-by: hagen1778 <roman@victoriametrics.com>
2022-09-14 15:08:40 +03:00

251 lines
6.9 KiB
Go

package main
import (
"context"
"errors"
"strings"
"testing"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmalert/datasource"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
)
func TestRecordingRule_Exec(t *testing.T) {
timestamp := time.Now()
testCases := []struct {
rule *RecordingRule
metrics []datasource.Metric
expTS []prompbmarshal.TimeSeries
}{
{
&RecordingRule{Name: "foo", state: newRuleState()},
[]datasource.Metric{metricWithValueAndLabels(t, 10,
"__name__", "bar",
)},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{10}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "foo",
}),
},
},
{
&RecordingRule{Name: "foobarbaz", state: newRuleState()},
[]datasource.Metric{
metricWithValueAndLabels(t, 1, "__name__", "foo", "job", "foo"),
metricWithValueAndLabels(t, 2, "__name__", "bar", "job", "bar"),
metricWithValueAndLabels(t, 3, "__name__", "baz", "job", "baz"),
},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{1}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "foobarbaz",
"job": "foo",
}),
newTimeSeries([]float64{2}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "foobarbaz",
"job": "bar",
}),
newTimeSeries([]float64{3}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "foobarbaz",
"job": "baz",
}),
},
},
{
&RecordingRule{
Name: "job:foo",
state: newRuleState(),
Labels: map[string]string{
"source": "test",
}},
[]datasource.Metric{
metricWithValueAndLabels(t, 2, "__name__", "foo", "job", "foo"),
metricWithValueAndLabels(t, 1, "__name__", "bar", "job", "bar")},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{2}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "job:foo",
"job": "foo",
"source": "test",
}),
newTimeSeries([]float64{1}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "job:foo",
"job": "bar",
"source": "test",
}),
},
},
}
for _, tc := range testCases {
t.Run(tc.rule.Name, func(t *testing.T) {
fq := &fakeQuerier{}
fq.add(tc.metrics...)
tc.rule.q = fq
tss, err := tc.rule.Exec(context.TODO(), time.Now(), 0)
if err != nil {
t.Fatalf("unexpected Exec err: %s", err)
}
if err := compareTimeSeries(t, tc.expTS, tss); err != nil {
t.Fatalf("timeseries missmatch: %s", err)
}
})
}
}
func TestRecordingRule_ExecRange(t *testing.T) {
timestamp := time.Now()
testCases := []struct {
rule *RecordingRule
metrics []datasource.Metric
expTS []prompbmarshal.TimeSeries
}{
{
&RecordingRule{Name: "foo"},
[]datasource.Metric{metricWithValuesAndLabels(t, []float64{10, 20, 30},
"__name__", "bar",
)},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{10, 20, 30},
[]int64{timestamp.UnixNano(), timestamp.UnixNano(), timestamp.UnixNano()},
map[string]string{
"__name__": "foo",
}),
},
},
{
&RecordingRule{Name: "foobarbaz"},
[]datasource.Metric{
metricWithValuesAndLabels(t, []float64{1}, "__name__", "foo", "job", "foo"),
metricWithValuesAndLabels(t, []float64{2, 3}, "__name__", "bar", "job", "bar"),
metricWithValuesAndLabels(t, []float64{4, 5, 6}, "__name__", "baz", "job", "baz"),
},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{1}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "foobarbaz",
"job": "foo",
}),
newTimeSeries([]float64{2, 3}, []int64{timestamp.UnixNano(), timestamp.UnixNano()}, map[string]string{
"__name__": "foobarbaz",
"job": "bar",
}),
newTimeSeries([]float64{4, 5, 6},
[]int64{timestamp.UnixNano(), timestamp.UnixNano(), timestamp.UnixNano()},
map[string]string{
"__name__": "foobarbaz",
"job": "baz",
}),
},
},
{
&RecordingRule{Name: "job:foo", Labels: map[string]string{
"source": "test",
}},
[]datasource.Metric{
metricWithValueAndLabels(t, 2, "__name__", "foo", "job", "foo"),
metricWithValueAndLabels(t, 1, "__name__", "bar", "job", "bar")},
[]prompbmarshal.TimeSeries{
newTimeSeries([]float64{2}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "job:foo",
"job": "foo",
"source": "test",
}),
newTimeSeries([]float64{1}, []int64{timestamp.UnixNano()}, map[string]string{
"__name__": "job:foo",
"job": "bar",
"source": "test",
}),
},
},
}
for _, tc := range testCases {
t.Run(tc.rule.Name, func(t *testing.T) {
fq := &fakeQuerier{}
fq.add(tc.metrics...)
tc.rule.q = fq
tss, err := tc.rule.ExecRange(context.TODO(), time.Now(), time.Now())
if err != nil {
t.Fatalf("unexpected Exec err: %s", err)
}
if err := compareTimeSeries(t, tc.expTS, tss); err != nil {
t.Fatalf("timeseries missmatch: %s", err)
}
})
}
}
func TestRecordingRuleLimit(t *testing.T) {
timestamp := time.Now()
testCases := []struct {
limit int
err string
}{
{
limit: 0,
},
{
limit: -1,
},
{
limit: 1,
err: "exec exceeded limit of 1 with 3 series",
},
{
limit: 2,
err: "exec exceeded limit of 2 with 3 series",
},
}
testMetrics := []datasource.Metric{
metricWithValuesAndLabels(t, []float64{1}, "__name__", "foo", "job", "foo"),
metricWithValuesAndLabels(t, []float64{2, 3}, "__name__", "bar", "job", "bar"),
metricWithValuesAndLabels(t, []float64{4, 5, 6}, "__name__", "baz", "job", "baz"),
}
rule := &RecordingRule{Name: "job:foo", state: newRuleState(), Labels: map[string]string{
"source": "test_limit",
}}
var err error
for _, testCase := range testCases {
fq := &fakeQuerier{}
fq.add(testMetrics...)
rule.q = fq
_, err = rule.Exec(context.TODO(), timestamp, testCase.limit)
if err != nil && !strings.EqualFold(err.Error(), testCase.err) {
t.Fatal(err)
}
}
}
func TestRecordingRule_ExecNegative(t *testing.T) {
rr := &RecordingRule{
Name: "job:foo",
state: newRuleState(),
Labels: map[string]string{
"job": "test",
},
}
fq := &fakeQuerier{}
expErr := "connection reset by peer"
fq.setErr(errors.New(expErr))
rr.q = fq
_, err := rr.Exec(context.TODO(), time.Now(), 0)
if err == nil {
t.Fatalf("expected to get err; got nil")
}
if !strings.Contains(err.Error(), expErr) {
t.Fatalf("expected to get err %q; got %q insterad", expErr, err)
}
fq.reset()
// add metrics which differs only by `job` label
// which will be overridden by rule
fq.add(metricWithValueAndLabels(t, 1, "__name__", "foo", "job", "foo"))
fq.add(metricWithValueAndLabels(t, 2, "__name__", "foo", "job", "bar"))
_, err = rr.Exec(context.TODO(), time.Now(), 0)
if err == nil {
t.Fatalf("expected to get err; got nil")
}
if !strings.Contains(err.Error(), errDuplicate.Error()) {
t.Fatalf("expected to get err %q; got %q insterad", errDuplicate, err)
}
}