mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
8f4790625d
Previously arbitrary time series could be returned from `quantile` depending on sort order for the last data point in the selected range. Fix this by returning the calculated time series. Fixes https://github.com/VictoriaMetrics/VictoriaMetrics/issues/55
470 lines
9.6 KiB
Go
470 lines
9.6 KiB
Go
package promql
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
var aggrFuncs = map[string]aggrFunc{
|
|
// See https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
|
|
"sum": newAggrFunc(aggrFuncSum),
|
|
"min": newAggrFunc(aggrFuncMin),
|
|
"max": newAggrFunc(aggrFuncMax),
|
|
"avg": newAggrFunc(aggrFuncAvg),
|
|
"stddev": newAggrFunc(aggrFuncStddev),
|
|
"stdvar": newAggrFunc(aggrFuncStdvar),
|
|
"count": newAggrFunc(aggrFuncCount),
|
|
"count_values": aggrFuncCountValues,
|
|
"bottomk": newAggrFuncTopK(true),
|
|
"topk": newAggrFuncTopK(false),
|
|
"quantile": aggrFuncQuantile,
|
|
|
|
// Extended PromQL funcs
|
|
"median": aggrFuncMedian,
|
|
"limitk": aggrFuncLimitK,
|
|
"distinct": newAggrFunc(aggrFuncDistinct),
|
|
}
|
|
|
|
type aggrFunc func(afa *aggrFuncArg) ([]*timeseries, error)
|
|
|
|
type aggrFuncArg struct {
|
|
args [][]*timeseries
|
|
ae *aggrFuncExpr
|
|
ec *EvalConfig
|
|
}
|
|
|
|
func getAggrFunc(s string) aggrFunc {
|
|
s = strings.ToLower(s)
|
|
return aggrFuncs[s]
|
|
}
|
|
|
|
func isAggrFunc(s string) bool {
|
|
return getAggrFunc(s) != nil
|
|
}
|
|
|
|
func isAggrFuncModifier(s string) bool {
|
|
s = strings.ToLower(s)
|
|
switch s {
|
|
case "by", "without":
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
func newAggrFunc(afe func(tss []*timeseries) []*timeseries) aggrFunc {
|
|
return func(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
|
return nil, err
|
|
}
|
|
return aggrFuncExt(afe, args[0], &afa.ae.Modifier, false)
|
|
}
|
|
}
|
|
|
|
func aggrFuncExt(afe func(tss []*timeseries) []*timeseries, argOrig []*timeseries, modifier *modifierExpr, keepOriginal bool) ([]*timeseries, error) {
|
|
arg := copyTimeseriesMetricNames(argOrig)
|
|
|
|
// Filter out superflouos tags.
|
|
var groupTags []string
|
|
groupOp := "by"
|
|
if modifier.Op != "" {
|
|
groupTags = modifier.Args
|
|
groupOp = strings.ToLower(modifier.Op)
|
|
}
|
|
switch groupOp {
|
|
case "by":
|
|
for _, ts := range arg {
|
|
ts.MetricName.RemoveTagsOn(groupTags)
|
|
}
|
|
case "without":
|
|
for _, ts := range arg {
|
|
ts.MetricName.RemoveTagsIgnoring(groupTags)
|
|
}
|
|
default:
|
|
return nil, fmt.Errorf(`unknown modifier: %q`, groupOp)
|
|
}
|
|
|
|
// Perform grouping.
|
|
m := make(map[string][]*timeseries)
|
|
bb := bbPool.Get()
|
|
for i, ts := range arg {
|
|
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
|
|
if keepOriginal {
|
|
ts = argOrig[i]
|
|
}
|
|
m[string(bb.B)] = append(m[string(bb.B)], ts)
|
|
}
|
|
bbPool.Put(bb)
|
|
|
|
rvs := make([]*timeseries, 0, len(m))
|
|
for _, tss := range m {
|
|
rv := afe(tss)
|
|
rvs = append(rvs, rv...)
|
|
}
|
|
return rvs, nil
|
|
}
|
|
|
|
func aggrFuncSum(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - nothing to sum.
|
|
return tss
|
|
}
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
sum := float64(0)
|
|
count := 0
|
|
for _, ts := range tss {
|
|
if math.IsNaN(ts.Values[i]) {
|
|
continue
|
|
}
|
|
sum += ts.Values[i]
|
|
count++
|
|
}
|
|
if count == 0 {
|
|
sum = nan
|
|
}
|
|
dst.Values[i] = sum
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncMin(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - nothing to min.
|
|
return tss
|
|
}
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
min := dst.Values[i]
|
|
for _, ts := range tss {
|
|
if math.IsNaN(min) || ts.Values[i] < min {
|
|
min = ts.Values[i]
|
|
}
|
|
}
|
|
dst.Values[i] = min
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncMax(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - nothing to max.
|
|
return tss
|
|
}
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
max := dst.Values[i]
|
|
for _, ts := range tss {
|
|
if math.IsNaN(max) || ts.Values[i] > max {
|
|
max = ts.Values[i]
|
|
}
|
|
}
|
|
dst.Values[i] = max
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncAvg(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - nothing to avg.
|
|
return tss
|
|
}
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
// Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation,
|
|
// since it is slower and has no obvious benefits in increased precision.
|
|
var sum float64
|
|
count := 0
|
|
for _, ts := range tss {
|
|
v := ts.Values[i]
|
|
if math.IsNaN(v) {
|
|
continue
|
|
}
|
|
count++
|
|
sum += v
|
|
}
|
|
avg := nan
|
|
if count > 0 {
|
|
avg = sum / float64(count)
|
|
}
|
|
dst.Values[i] = avg
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncStddev(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - stddev over a single time series is zero
|
|
values := tss[0].Values
|
|
for i, v := range values {
|
|
if !math.IsNaN(v) {
|
|
values[i] = 0
|
|
}
|
|
}
|
|
return tss
|
|
}
|
|
rvs := aggrFuncStdvar(tss)
|
|
dst := rvs[0]
|
|
for i, v := range dst.Values {
|
|
dst.Values[i] = math.Sqrt(v)
|
|
}
|
|
return rvs
|
|
}
|
|
|
|
func aggrFuncStdvar(tss []*timeseries) []*timeseries {
|
|
if len(tss) == 1 {
|
|
// Fast path - stdvar over a single time series is zero
|
|
values := tss[0].Values
|
|
for i, v := range values {
|
|
if !math.IsNaN(v) {
|
|
values[i] = 0
|
|
}
|
|
}
|
|
return tss
|
|
}
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
// See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation
|
|
var avg float64
|
|
var count float64
|
|
var q float64
|
|
for _, ts := range tss {
|
|
v := ts.Values[i]
|
|
if math.IsNaN(v) {
|
|
continue
|
|
}
|
|
count++
|
|
avgNew := avg + (v-avg)/count
|
|
q += (v - avg) * (v - avgNew)
|
|
avg = avgNew
|
|
}
|
|
if count == 0 {
|
|
q = nan
|
|
}
|
|
dst.Values[i] = q / count
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncCount(tss []*timeseries) []*timeseries {
|
|
dst := tss[0]
|
|
for i := range dst.Values {
|
|
count := 0
|
|
for _, ts := range tss {
|
|
if math.IsNaN(ts.Values[i]) {
|
|
continue
|
|
}
|
|
count++
|
|
}
|
|
dst.Values[i] = float64(count)
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncDistinct(tss []*timeseries) []*timeseries {
|
|
dst := tss[0]
|
|
m := make(map[float64]struct{}, len(tss))
|
|
for i := range dst.Values {
|
|
for _, ts := range tss {
|
|
v := ts.Values[i]
|
|
if math.IsNaN(v) {
|
|
continue
|
|
}
|
|
m[v] = struct{}{}
|
|
}
|
|
n := float64(len(m))
|
|
if n == 0 {
|
|
n = nan
|
|
}
|
|
dst.Values[i] = n
|
|
for k := range m {
|
|
delete(m, k)
|
|
}
|
|
}
|
|
return tss[:1]
|
|
}
|
|
|
|
func aggrFuncCountValues(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
|
return nil, err
|
|
}
|
|
dstLabel, err := getString(args[0], 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
afe := func(tss []*timeseries) []*timeseries {
|
|
m := make(map[float64]bool)
|
|
for _, ts := range tss {
|
|
for _, v := range ts.Values {
|
|
m[v] = true
|
|
}
|
|
}
|
|
values := make([]float64, 0, len(m))
|
|
for v := range m {
|
|
values = append(values, v)
|
|
}
|
|
sort.Float64s(values)
|
|
|
|
var rvs []*timeseries
|
|
for _, v := range values {
|
|
var dst timeseries
|
|
dst.CopyFrom(tss[0])
|
|
dst.MetricName.RemoveTag(dstLabel)
|
|
dst.MetricName.AddTag(dstLabel, strconv.FormatFloat(v, 'g', -1, 64))
|
|
for i := range dst.Values {
|
|
count := 0
|
|
for _, ts := range tss {
|
|
if ts.Values[i] == v {
|
|
count++
|
|
}
|
|
}
|
|
n := float64(count)
|
|
if n == 0 {
|
|
n = nan
|
|
}
|
|
dst.Values[i] = n
|
|
}
|
|
rvs = append(rvs, &dst)
|
|
}
|
|
return rvs
|
|
}
|
|
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, false)
|
|
}
|
|
|
|
func newAggrFuncTopK(isReverse bool) aggrFunc {
|
|
return func(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
|
return nil, err
|
|
}
|
|
ks, err := getScalar(args[0], 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
afe := func(tss []*timeseries) []*timeseries {
|
|
rvs := tss
|
|
for n := range rvs[0].Values {
|
|
sort.Slice(rvs, func(i, j int) bool {
|
|
a := rvs[i].Values[n]
|
|
b := rvs[j].Values[n]
|
|
cmp := lessWithNaNs(a, b)
|
|
if isReverse {
|
|
cmp = !cmp
|
|
}
|
|
return cmp
|
|
})
|
|
if math.IsNaN(ks[n]) {
|
|
ks[n] = 0
|
|
}
|
|
k := int(ks[n])
|
|
if k < 0 {
|
|
k = 0
|
|
}
|
|
if k > len(rvs) {
|
|
k = len(rvs)
|
|
}
|
|
for _, ts := range rvs[:len(rvs)-k] {
|
|
ts.Values[n] = nan
|
|
}
|
|
}
|
|
return rvs
|
|
}
|
|
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, true)
|
|
}
|
|
}
|
|
|
|
func aggrFuncLimitK(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
|
return nil, err
|
|
}
|
|
ks, err := getScalar(args[0], 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
maxK := 0
|
|
for _, kf := range ks {
|
|
k := int(kf)
|
|
if k > maxK {
|
|
maxK = k
|
|
}
|
|
}
|
|
afe := func(tss []*timeseries) []*timeseries {
|
|
if len(tss) > maxK {
|
|
tss = tss[:maxK]
|
|
}
|
|
for i, kf := range ks {
|
|
k := int(kf)
|
|
if k < 0 {
|
|
k = 0
|
|
}
|
|
for j := k; j < len(tss); j++ {
|
|
tss[j].Values[i] = nan
|
|
}
|
|
}
|
|
return tss
|
|
}
|
|
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, true)
|
|
}
|
|
|
|
func aggrFuncQuantile(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
|
return nil, err
|
|
}
|
|
phis, err := getScalar(args[0], 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
afe := newAggrQuantileFunc(phis)
|
|
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, false)
|
|
}
|
|
|
|
func aggrFuncMedian(afa *aggrFuncArg) ([]*timeseries, error) {
|
|
args := afa.args
|
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
|
return nil, err
|
|
}
|
|
phis := evalNumber(afa.ec, 0.5)[0].Values
|
|
afe := newAggrQuantileFunc(phis)
|
|
return aggrFuncExt(afe, args[0], &afa.ae.Modifier, false)
|
|
}
|
|
|
|
func newAggrQuantileFunc(phis []float64) func(tss []*timeseries) []*timeseries {
|
|
return func(tss []*timeseries) []*timeseries {
|
|
dst := tss[0]
|
|
for n := range dst.Values {
|
|
sort.Slice(tss, func(i, j int) bool {
|
|
a := tss[i].Values[n]
|
|
b := tss[j].Values[n]
|
|
return lessWithNaNs(a, b)
|
|
})
|
|
phi := phis[n]
|
|
if math.IsNaN(phi) {
|
|
phi = 1
|
|
}
|
|
if phi < 0 {
|
|
phi = 0
|
|
}
|
|
if phi > 1 {
|
|
phi = 1
|
|
}
|
|
idx := int(math.Round(float64(len(tss)-1) * phi))
|
|
dst.Values[n] = tss[idx].Values[n]
|
|
}
|
|
tss[0] = dst
|
|
return tss[:1]
|
|
}
|
|
}
|
|
|
|
func lessWithNaNs(a, b float64) bool {
|
|
if math.IsNaN(a) {
|
|
return !math.IsNaN(b)
|
|
}
|
|
return a < b
|
|
}
|