VictoriaMetrics/app/vmselect/netstorage/netstorage.go
Aliaksandr Valialkin 53d871d0b1
app/vmselect/netstorage: reduce tail latency during query processing
Previously the selected time series were split evenly among available CPU cores
for further processing - e.g unpacking the data and applying the given rollup
function to the unpacked data.
Some time series could be processed slower than others.
This could result in uneven work distribution among available CPU cores,
e.g. some CPU cores could complete their work sooner than others.
This could slow down query execution.

The new algorithm allows stealing time series to process from other CPU cores
when all the local work is done. This should reduce the maximum time
needed for query execution (aka tail latency).

The new algorithm should also scale better on systems with many CPU cores,
since every CPU processes locally assigned time series without inter-CPU communications.

The inter-CPU communications are used only when all the local work is finished
and the pending work from other CPUs needs to be stealed.
2023-01-10 13:43:14 -08:00

1286 lines
36 KiB
Go

package netstorage
import (
"container/heap"
"errors"
"flag"
"fmt"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/metricsql"
)
var (
maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned from /api/v1/labels")
maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned from /api/v1/label/<label_name>/values")
maxSamplesPerSeries = flag.Int("search.maxSamplesPerSeries", 30e6, "The maximum number of raw samples a single query can scan per each time series. This option allows limiting memory usage")
maxSamplesPerQuery = flag.Int("search.maxSamplesPerQuery", 1e9, "The maximum number of raw samples a single query can process across all time series. This protects from heavy queries, which select unexpectedly high number of raw samples. See also -search.maxSamplesPerSeries")
)
// Result is a single timeseries result.
//
// ProcessSearchQuery returns Result slice.
type Result struct {
// The name of the metric.
MetricName storage.MetricName
// Values are sorted by Timestamps.
Values []float64
Timestamps []int64
}
func (r *Result) reset() {
r.MetricName.Reset()
r.Values = r.Values[:0]
r.Timestamps = r.Timestamps[:0]
}
// Results holds results returned from ProcessSearchQuery.
type Results struct {
tr storage.TimeRange
deadline searchutils.Deadline
packedTimeseries []packedTimeseries
sr *storage.Search
tbf *tmpBlocksFile
}
// Len returns the number of results in rss.
func (rss *Results) Len() int {
return len(rss.packedTimeseries)
}
// Cancel cancels rss work.
func (rss *Results) Cancel() {
rss.mustClose()
}
func (rss *Results) mustClose() {
putStorageSearch(rss.sr)
rss.sr = nil
putTmpBlocksFile(rss.tbf)
rss.tbf = nil
}
type timeseriesWork struct {
mustStop *uint32
rss *Results
pts *packedTimeseries
f func(rs *Result, workerID uint) error
err error
rowsProcessed int
}
func (tsw *timeseriesWork) reset() {
tsw.mustStop = nil
tsw.rss = nil
tsw.pts = nil
tsw.f = nil
tsw.err = nil
tsw.rowsProcessed = 0
}
func getTimeseriesWork() *timeseriesWork {
v := tswPool.Get()
if v == nil {
v = &timeseriesWork{}
}
return v.(*timeseriesWork)
}
func putTimeseriesWork(tsw *timeseriesWork) {
tsw.reset()
tswPool.Put(tsw)
}
var tswPool sync.Pool
func (tsw *timeseriesWork) do(r *Result, workerID uint) error {
if atomic.LoadUint32(tsw.mustStop) != 0 {
return nil
}
rss := tsw.rss
if rss.deadline.Exceeded() {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
}
if err := tsw.pts.Unpack(r, rss.tbf, rss.tr); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("error during time series unpacking: %w", err)
}
tsw.rowsProcessed = len(r.Timestamps)
if len(r.Timestamps) > 0 {
if err := tsw.f(r, workerID); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return err
}
}
return nil
}
func timeseriesWorker(qt *querytracer.Tracer, workChs []chan *timeseriesWork, workerID uint) {
tmpResult := getTmpResult()
// Perform own work at first.
rowsProcessed := 0
seriesProcessed := 0
ch := workChs[workerID]
for tsw := range ch {
tsw.err = tsw.do(&tmpResult.rs, workerID)
rowsProcessed += tsw.rowsProcessed
seriesProcessed++
}
qt.Printf("own work processed: series=%d, samples=%d", seriesProcessed, rowsProcessed)
// Then help others with the remaining work.
rowsProcessed = 0
seriesProcessed = 0
idx := int(workerID)
for {
tsw, idxNext := stealTimeseriesWork(workChs, idx)
if tsw == nil {
// There is no more work
break
}
tsw.err = tsw.do(&tmpResult.rs, workerID)
rowsProcessed += tsw.rowsProcessed
seriesProcessed++
idx = idxNext
}
qt.Printf("others work processed: series=%d, samples=%d", seriesProcessed, rowsProcessed)
putTmpResult(tmpResult)
}
func stealTimeseriesWork(workChs []chan *timeseriesWork, startIdx int) (*timeseriesWork, int) {
for i := startIdx; i < startIdx+len(workChs); i++ {
// Give a chance other goroutines to perform their work
runtime.Gosched()
idx := i % len(workChs)
ch := workChs[idx]
// It is expected that every channel in the workChs is already closed,
// so the next line should return immediately.
tsw, ok := <-ch
if ok {
return tsw, idx
}
}
return nil, startIdx
}
func getTmpResult() *result {
v := resultPool.Get()
if v == nil {
v = &result{}
}
return v.(*result)
}
func putTmpResult(r *result) {
currentTime := fasttime.UnixTimestamp()
if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 {
// Reset r.rs in order to preseve memory usage after processing big time series with millions of rows.
r.rs = Result{}
r.lastResetTime = currentTime
}
resultPool.Put(r)
}
type result struct {
rs Result
lastResetTime uint64
}
var resultPool sync.Pool
// RunParallel runs f in parallel for all the results from rss.
//
// f shouldn't hold references to rs after returning.
// workerID is the id of the worker goroutine that calls f.
// Data processing is immediately stopped if f returns non-nil error.
//
// rss becomes unusable after the call to RunParallel.
func (rss *Results) RunParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) error {
qt = qt.NewChild("parallel process of fetched data")
defer rss.mustClose()
rowsProcessedTotal, err := rss.runParallel(qt, f)
seriesProcessedTotal := len(rss.packedTimeseries)
rss.packedTimeseries = rss.packedTimeseries[:0]
rowsReadPerQuery.Update(float64(rowsProcessedTotal))
seriesReadPerQuery.Update(float64(seriesProcessedTotal))
qt.Donef("series=%d, samples=%d", seriesProcessedTotal, rowsProcessedTotal)
return err
}
func (rss *Results) runParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) (int, error) {
tswsLen := len(rss.packedTimeseries)
if tswsLen == 0 {
// Nothing to process
return 0, nil
}
var mustStop uint32
initTimeseriesWork := func(tsw *timeseriesWork, pts *packedTimeseries) {
tsw.rss = rss
tsw.pts = pts
tsw.f = f
tsw.mustStop = &mustStop
}
if gomaxprocs == 1 || tswsLen == 1 {
// It is faster to process time series in the current goroutine.
tsw := getTimeseriesWork()
tmpResult := getTmpResult()
rowsProcessedTotal := 0
var err error
for i := range rss.packedTimeseries {
initTimeseriesWork(tsw, &rss.packedTimeseries[i])
err = tsw.do(&tmpResult.rs, 0)
rowsReadPerSeries.Update(float64(tsw.rowsProcessed))
rowsProcessedTotal += tsw.rowsProcessed
if err != nil {
break
}
tsw.reset()
}
putTmpResult(tmpResult)
putTimeseriesWork(tsw)
return rowsProcessedTotal, err
}
// Slow path - spin up multiple local workers for parallel data processing.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
// Prepare the work for workers.
tsws := make([]*timeseriesWork, len(rss.packedTimeseries))
for i := range rss.packedTimeseries {
tsw := getTimeseriesWork()
initTimeseriesWork(tsw, &rss.packedTimeseries[i])
tsws[i] = tsw
}
// Prepare worker channels.
workers := len(tsws)
if workers > gomaxprocs {
workers = gomaxprocs
}
itemsPerWorker := (len(tsws) + workers - 1) / workers
workChs := make([]chan *timeseriesWork, workers)
for i := range workChs {
workChs[i] = make(chan *timeseriesWork, itemsPerWorker)
}
// Spread work among workers.
for i, tsw := range tsws {
idx := i % len(workChs)
workChs[idx] <- tsw
}
// Mark worker channels as closed.
for _, workCh := range workChs {
close(workCh)
}
// Start workers and wait until they finish the work.
var wg sync.WaitGroup
for i := range workChs {
wg.Add(1)
qtChild := qt.NewChild("worker #%d", i)
go func(workerID uint) {
timeseriesWorker(qtChild, workChs, workerID)
qtChild.Done()
wg.Done()
}(uint(i))
}
wg.Wait()
// Collect results.
var firstErr error
rowsProcessedTotal := 0
for _, tsw := range tsws {
if tsw.err != nil && firstErr == nil {
// Return just the first error, since other errors are likely duplicate the first error.
firstErr = tsw.err
}
rowsReadPerSeries.Update(float64(tsw.rowsProcessed))
rowsProcessedTotal += tsw.rowsProcessed
putTimeseriesWork(tsw)
}
return rowsProcessedTotal, firstErr
}
var (
rowsReadPerSeries = metrics.NewHistogram(`vm_rows_read_per_series`)
rowsReadPerQuery = metrics.NewHistogram(`vm_rows_read_per_query`)
seriesReadPerQuery = metrics.NewHistogram(`vm_series_read_per_query`)
)
var gomaxprocs = cgroup.AvailableCPUs()
type packedTimeseries struct {
metricName string
brs []blockRef
}
type unpackWork struct {
tbf *tmpBlocksFile
br blockRef
tr storage.TimeRange
sb *sortBlock
err error
}
func (upw *unpackWork) reset() {
upw.tbf = nil
upw.br = blockRef{}
upw.tr = storage.TimeRange{}
upw.sb = nil
upw.err = nil
}
func (upw *unpackWork) unpack(tmpBlock *storage.Block) {
sb := getSortBlock()
if err := sb.unpackFrom(tmpBlock, upw.tbf, upw.br, upw.tr); err != nil {
putSortBlock(sb)
upw.err = fmt.Errorf("cannot unpack block: %w", err)
return
}
upw.sb = sb
}
func getUnpackWork() *unpackWork {
v := unpackWorkPool.Get()
if v != nil {
return v.(*unpackWork)
}
return &unpackWork{}
}
func putUnpackWork(upw *unpackWork) {
upw.reset()
unpackWorkPool.Put(upw)
}
var unpackWorkPool sync.Pool
func unpackWorker(workChs []chan *unpackWork, workerID uint) {
tmpBlock := getTmpStorageBlock()
// Deal with own work at first.
ch := workChs[workerID]
for upw := range ch {
upw.unpack(tmpBlock)
}
// Then help others with their work.
idx := int(workerID)
for {
upw, idxNext := stealUnpackWork(workChs, idx)
if upw == nil {
// There is no more work
break
}
upw.unpack(tmpBlock)
idx = idxNext
}
putTmpStorageBlock(tmpBlock)
}
func stealUnpackWork(workChs []chan *unpackWork, startIdx int) (*unpackWork, int) {
for i := startIdx; i < startIdx+len(workChs); i++ {
// Give a chance other goroutines to perform their work
runtime.Gosched()
idx := i % len(workChs)
ch := workChs[idx]
// It is expected that every channel in the workChs is already closed,
// so the next line should return immediately.
upw, ok := <-ch
if ok {
return upw, idx
}
}
return nil, startIdx
}
func getTmpStorageBlock() *storage.Block {
v := tmpStorageBlockPool.Get()
if v == nil {
v = &storage.Block{}
}
return v.(*storage.Block)
}
func putTmpStorageBlock(sb *storage.Block) {
tmpStorageBlockPool.Put(sb)
}
var tmpStorageBlockPool sync.Pool
// Unpack unpacks pts to dst.
func (pts *packedTimeseries) Unpack(dst *Result, tbf *tmpBlocksFile, tr storage.TimeRange) error {
dst.reset()
if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil {
return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err)
}
sbh := getSortBlocksHeap()
var err error
sbh.sbs, err = pts.unpackTo(sbh.sbs[:0], tbf, tr)
pts.brs = pts.brs[:0]
if err != nil {
putSortBlocksHeap(sbh)
return err
}
dedupInterval := storage.GetDedupInterval()
mergeSortBlocks(dst, sbh, dedupInterval)
putSortBlocksHeap(sbh)
return nil
}
func (pts *packedTimeseries) unpackTo(dst []*sortBlock, tbf *tmpBlocksFile, tr storage.TimeRange) ([]*sortBlock, error) {
upwsLen := len(pts.brs)
if upwsLen == 0 {
// Nothing to do
return nil, nil
}
initUnpackWork := func(upw *unpackWork, br blockRef) {
upw.tbf = tbf
upw.br = br
upw.tr = tr
}
if gomaxprocs == 1 || upwsLen <= 100 {
// It is faster to unpack all the data in the current goroutine.
upw := getUnpackWork()
samples := 0
tmpBlock := getTmpStorageBlock()
var err error
for _, br := range pts.brs {
initUnpackWork(upw, br)
upw.unpack(tmpBlock)
if upw.err != nil {
return dst, upw.err
}
samples += len(upw.sb.Timestamps)
if *maxSamplesPerSeries > 0 && samples > *maxSamplesPerSeries {
putSortBlock(upw.sb)
err = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
break
}
dst = append(dst, upw.sb)
upw.reset()
}
putTmpStorageBlock(tmpBlock)
putUnpackWork(upw)
return dst, err
}
// Slow path - spin up multiple local workers for parallel data unpacking.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
// Prepare the work for workers.
upws := make([]*unpackWork, upwsLen)
for i, br := range pts.brs {
upw := getUnpackWork()
initUnpackWork(upw, br)
upws[i] = upw
}
// Prepare worker channels.
workers := len(upws)
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
itemsPerWorker := (len(upws) + workers - 1) / workers
workChs := make([]chan *unpackWork, workers)
for i := range workChs {
workChs[i] = make(chan *unpackWork, itemsPerWorker)
}
// Spread work among worker channels.
for i, upw := range upws {
idx := i % len(workChs)
workChs[idx] <- upw
}
// Mark worker channels as closed.
for _, workCh := range workChs {
close(workCh)
}
// Start workers and wait until they finish the work.
var wg sync.WaitGroup
for i := 0; i < workers; i++ {
wg.Add(1)
go func(workerID uint) {
unpackWorker(workChs, workerID)
wg.Done()
}(uint(i))
}
wg.Wait()
// Collect results.
samples := 0
var firstErr error
for _, upw := range upws {
if upw.err != nil && firstErr == nil {
// Return the first error only, since other errors are likely the same.
firstErr = upw.err
}
if firstErr == nil {
sb := upw.sb
samples += len(sb.Timestamps)
if *maxSamplesPerSeries > 0 && samples > *maxSamplesPerSeries {
putSortBlock(sb)
firstErr = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
} else {
dst = append(dst, sb)
}
} else {
putSortBlock(upw.sb)
}
putUnpackWork(upw)
}
return dst, firstErr
}
func getSortBlock() *sortBlock {
v := sbPool.Get()
if v == nil {
return &sortBlock{}
}
return v.(*sortBlock)
}
func putSortBlock(sb *sortBlock) {
sb.reset()
sbPool.Put(sb)
}
var sbPool sync.Pool
var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`)
func mergeSortBlocks(dst *Result, sbh *sortBlocksHeap, dedupInterval int64) {
// Skip empty sort blocks, since they cannot be passed to heap.Init.
sbs := sbh.sbs[:0]
for _, sb := range sbh.sbs {
if len(sb.Timestamps) == 0 {
putSortBlock(sb)
continue
}
sbs = append(sbs, sb)
}
sbh.sbs = sbs
if sbh.Len() == 0 {
return
}
heap.Init(sbh)
for {
sbs := sbh.sbs
top := sbs[0]
if len(sbs) == 1 {
dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...)
dst.Values = append(dst.Values, top.Values[top.NextIdx:]...)
putSortBlock(top)
break
}
sbNext := sbh.getNextBlock()
tsNext := sbNext.Timestamps[sbNext.NextIdx]
topNextIdx := top.NextIdx
if n := equalSamplesPrefix(top, sbNext); n > 0 && dedupInterval > 0 {
// Skip n replicated samples at top if deduplication is enabled.
top.NextIdx = topNextIdx + n
} else {
// Copy samples from top to dst with timestamps not exceeding tsNext.
top.NextIdx = topNextIdx + binarySearchTimestamps(top.Timestamps[topNextIdx:], tsNext)
dst.Timestamps = append(dst.Timestamps, top.Timestamps[topNextIdx:top.NextIdx]...)
dst.Values = append(dst.Values, top.Values[topNextIdx:top.NextIdx]...)
}
if top.NextIdx < len(top.Timestamps) {
heap.Fix(sbh, 0)
} else {
heap.Pop(sbh)
putSortBlock(top)
}
}
timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values, dedupInterval)
dedups := len(dst.Timestamps) - len(timestamps)
dedupsDuringSelect.Add(dedups)
dst.Timestamps = timestamps
dst.Values = values
}
var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`)
func equalSamplesPrefix(a, b *sortBlock) int {
n := equalTimestampsPrefix(a.Timestamps[a.NextIdx:], b.Timestamps[b.NextIdx:])
if n == 0 {
return 0
}
return equalValuesPrefix(a.Values[a.NextIdx:a.NextIdx+n], b.Values[b.NextIdx:b.NextIdx+n])
}
func equalTimestampsPrefix(a, b []int64) int {
for i, v := range a {
if i >= len(b) || v != b[i] {
return i
}
}
return len(a)
}
func equalValuesPrefix(a, b []float64) int {
for i, v := range a {
if i >= len(b) || v != b[i] {
return i
}
}
return len(a)
}
func binarySearchTimestamps(timestamps []int64, ts int64) int {
// The code has been adapted from sort.Search.
n := len(timestamps)
if n > 0 && timestamps[n-1] <= ts {
// Fast path for timestamps scanned in ascending order.
return n
}
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1)
if h >= 0 && h < len(timestamps) && timestamps[h] <= ts {
i = h + 1
} else {
j = h
}
}
return i
}
type sortBlock struct {
Timestamps []int64
Values []float64
NextIdx int
}
func (sb *sortBlock) reset() {
sb.Timestamps = sb.Timestamps[:0]
sb.Values = sb.Values[:0]
sb.NextIdx = 0
}
func (sb *sortBlock) unpackFrom(tmpBlock *storage.Block, tbf *tmpBlocksFile, br blockRef, tr storage.TimeRange) error {
tmpBlock.Reset()
brReal := tbf.MustReadBlockRefAt(br.partRef, br.addr)
brReal.MustReadBlock(tmpBlock)
if err := tmpBlock.UnmarshalData(); err != nil {
return fmt.Errorf("cannot unmarshal block: %w", err)
}
sb.Timestamps, sb.Values = tmpBlock.AppendRowsWithTimeRangeFilter(sb.Timestamps[:0], sb.Values[:0], tr)
skippedRows := tmpBlock.RowsCount() - len(sb.Timestamps)
metricRowsSkipped.Add(skippedRows)
return nil
}
type sortBlocksHeap struct {
sbs []*sortBlock
}
func (sbh *sortBlocksHeap) getNextBlock() *sortBlock {
sbs := sbh.sbs
if len(sbs) < 2 {
return nil
}
if len(sbs) < 3 {
return sbs[1]
}
a := sbs[1]
b := sbs[2]
if a.Timestamps[a.NextIdx] <= b.Timestamps[b.NextIdx] {
return a
}
return b
}
func (sbh *sortBlocksHeap) Len() int {
return len(sbh.sbs)
}
func (sbh *sortBlocksHeap) Less(i, j int) bool {
sbs := sbh.sbs
a := sbs[i]
b := sbs[j]
return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx]
}
func (sbh *sortBlocksHeap) Swap(i, j int) {
sbs := sbh.sbs
sbs[i], sbs[j] = sbs[j], sbs[i]
}
func (sbh *sortBlocksHeap) Push(x interface{}) {
sbh.sbs = append(sbh.sbs, x.(*sortBlock))
}
func (sbh *sortBlocksHeap) Pop() interface{} {
sbs := sbh.sbs
v := sbs[len(sbs)-1]
sbs[len(sbs)-1] = nil
sbh.sbs = sbs[:len(sbs)-1]
return v
}
func getSortBlocksHeap() *sortBlocksHeap {
v := sbhPool.Get()
if v == nil {
return &sortBlocksHeap{}
}
return v.(*sortBlocksHeap)
}
func putSortBlocksHeap(sbh *sortBlocksHeap) {
sbs := sbh.sbs
for i := range sbs {
sbs[i] = nil
}
sbh.sbs = sbs[:0]
sbhPool.Put(sbh)
}
var sbhPool sync.Pool
// DeleteSeries deletes time series matching the given tagFilterss.
func DeleteSeries(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (int, error) {
qt = qt.NewChild("delete series: %s", sq)
defer qt.Done()
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return 0, err
}
return vmstorage.DeleteSeries(qt, tfss)
}
// LabelNames returns label names matching the given sq until the given deadline.
func LabelNames(qt *querytracer.Tracer, sq *storage.SearchQuery, maxLabelNames int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get labels: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelNames > *maxTagKeysPerSearch || maxLabelNames <= 0 {
maxLabelNames = *maxTagKeysPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labels, err := vmstorage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxLabelNames, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during labels search on time range: %w", err)
}
// Sort labels like Prometheus does
sort.Strings(labels)
qt.Printf("sort %d labels", len(labels))
return labels, nil
}
// GraphiteTags returns Graphite tags until the given deadline.
func GraphiteTags(qt *querytracer.Tracer, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tags: filter=%s, limit=%d", filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
labels, err := LabelNames(qt, sq, 0, deadline)
if err != nil {
return nil, err
}
// Substitute "__name__" with "name" for Graphite compatibility
for i := range labels {
if labels[i] != "__name__" {
continue
}
// Prevent from duplicate `name` tag.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/942
if hasString(labels, "name") {
labels = append(labels[:i], labels[i+1:]...)
} else {
labels[i] = "name"
sort.Strings(labels)
}
break
}
if len(filter) > 0 {
labels, err = applyGraphiteRegexpFilter(filter, labels)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(labels) {
labels = labels[:limit]
}
return labels, nil
}
func hasString(a []string, s string) bool {
for _, x := range a {
if x == s {
return true
}
}
return false
}
// LabelValues returns label values matching the given labelName and sq until the given deadline.
func LabelValues(qt *querytracer.Tracer, labelName string, sq *storage.SearchQuery, maxLabelValues int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get values for label %s: %s", labelName, sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelValues > *maxTagValuesPerSearch || maxLabelValues <= 0 {
maxLabelValues = *maxTagValuesPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labelValues, err := vmstorage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during label values search on time range for labelName=%q: %w", labelName, err)
}
// Sort labelValues like Prometheus does
sort.Strings(labelValues)
qt.Printf("sort %d label values", len(labelValues))
return labelValues, nil
}
// GraphiteTagValues returns tag values for the given tagName until the given deadline.
func GraphiteTagValues(qt *querytracer.Tracer, tagName, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tag values for tagName=%s, filter=%s, limit=%d", tagName, filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if tagName == "name" {
tagName = ""
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
tagValues, err := LabelValues(qt, tagName, sq, 0, deadline)
if err != nil {
return nil, err
}
if len(filter) > 0 {
tagValues, err = applyGraphiteRegexpFilter(filter, tagValues)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(tagValues) {
tagValues = tagValues[:limit]
}
return tagValues, nil
}
// TagValueSuffixes returns tag value suffixes for the given tagKey and the given tagValuePrefix.
//
// It can be used for implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find
func TagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, maxSuffixes int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get tag value suffixes for tagKey=%s, tagValuePrefix=%s, maxSuffixes=%d, timeRange=%s", tagKey, tagValuePrefix, maxSuffixes, &tr)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
suffixes, err := vmstorage.SearchTagValueSuffixes(qt, tr, tagKey, tagValuePrefix, delimiter, maxSuffixes, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during search for suffixes for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s: %w",
tagKey, tagValuePrefix, delimiter, tr.String(), err)
}
if len(suffixes) >= maxSuffixes {
return nil, fmt.Errorf("more than -search.maxTagValueSuffixesPerSearch=%d tag value suffixes found for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s; "+
"either narrow down the query or increase -search.maxTagValueSuffixesPerSearch command-line flag value",
maxSuffixes, tagKey, tagValuePrefix, delimiter, tr.String())
}
return suffixes, nil
}
// TSDBStatus returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats
//
// It accepts aribtrary filters on time series in sq.
func TSDBStatus(qt *querytracer.Tracer, sq *storage.SearchQuery, focusLabel string, topN int, deadline searchutils.Deadline) (*storage.TSDBStatus, error) {
qt = qt.NewChild("get tsdb stats: %s, focusLabel=%q, topN=%d", sq, focusLabel, topN)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
date := uint64(tr.MinTimestamp) / (3600 * 24 * 1000)
status, err := vmstorage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during tsdb status request: %w", err)
}
return status, nil
}
// SeriesCount returns the number of unique series.
func SeriesCount(qt *querytracer.Tracer, deadline searchutils.Deadline) (uint64, error) {
qt = qt.NewChild("get series count")
defer qt.Done()
if deadline.Exceeded() {
return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
n, err := vmstorage.GetSeriesCount(deadline.Deadline())
if err != nil {
return 0, fmt.Errorf("error during series count request: %w", err)
}
return n, nil
}
func getStorageSearch() *storage.Search {
v := ssPool.Get()
if v == nil {
return &storage.Search{}
}
return v.(*storage.Search)
}
func putStorageSearch(sr *storage.Search) {
sr.MustClose()
ssPool.Put(sr)
}
var ssPool sync.Pool
// ExportBlocks searches for time series matching sq and calls f for each found block.
//
// f is called in parallel from multiple goroutines.
// Data processing is immediately stopped if f returns non-nil error.
// It is the responsibility of f to call b.UnmarshalData before reading timestamps and values from the block.
// It is the responsibility of f to filter blocks according to the given tr.
func ExportBlocks(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline,
f func(mn *storage.MetricName, b *storage.Block, tr storage.TimeRange, workerID uint) error) error {
qt = qt.NewChild("export blocks: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded before starting data export: %s", deadline.String())
}
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
defer putStorageSearch(sr)
startTime := time.Now()
sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
// Start workers that call f in parallel on available CPU cores.
gomaxprocs := cgroup.AvailableCPUs()
workCh := make(chan *exportWork, gomaxprocs*8)
var (
errGlobal error
errGlobalLock sync.Mutex
mustStop uint32
)
var wg sync.WaitGroup
wg.Add(gomaxprocs)
for i := 0; i < gomaxprocs; i++ {
go func(workerID uint) {
defer wg.Done()
for xw := range workCh {
if err := f(&xw.mn, &xw.b, tr, workerID); err != nil {
errGlobalLock.Lock()
if errGlobal != nil {
errGlobal = err
atomic.StoreUint32(&mustStop, 1)
}
errGlobalLock.Unlock()
}
xw.reset()
exportWorkPool.Put(xw)
}
}(uint(i))
}
// Feed workers with work
blocksRead := 0
samples := 0
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
if atomic.LoadUint32(&mustStop) != 0 {
break
}
xw := exportWorkPool.Get().(*exportWork)
if err := xw.mn.Unmarshal(sr.MetricBlockRef.MetricName); err != nil {
return fmt.Errorf("cannot unmarshal metricName for block #%d: %w", blocksRead, err)
}
br := sr.MetricBlockRef.BlockRef
br.MustReadBlock(&xw.b)
samples += br.RowsCount()
workCh <- xw
}
close(workCh)
// Wait for workers to finish.
wg.Wait()
qt.Printf("export blocks=%d, samples=%d", blocksRead, samples)
// Check errors.
err = sr.Error()
if err == nil {
err = errGlobal
}
if err != nil {
if errors.Is(err, storage.ErrDeadlineExceeded) {
return fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
return nil
}
type exportWork struct {
mn storage.MetricName
b storage.Block
}
func (xw *exportWork) reset() {
xw.mn.Reset()
xw.b.Reset()
}
var exportWorkPool = &sync.Pool{
New: func() interface{} {
return &exportWork{}
},
}
// SearchMetricNames returns all the metric names matching sq until the given deadline.
//
// The returned metric names must be unmarshaled via storage.MetricName.UnmarshalString().
func SearchMetricNames(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("fetch metric names: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting to search metric names: %s", deadline.String())
}
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
metricNames, err := vmstorage.SearchMetricNames(qt, tfss, tr, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("cannot find metric names: %w", err)
}
sort.Strings(metricNames)
qt.Printf("sort %d metric names", len(metricNames))
return metricNames, nil
}
// ProcessSearchQuery performs sq until the given deadline.
//
// Results.RunParallel or Results.Cancel must be called on the returned Results.
func ProcessSearchQuery(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (*Results, error) {
qt = qt.NewChild("fetch matching series: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
startTime := time.Now()
maxSeriesCount := sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
type blockRefs struct {
brsPrealloc [4]blockRef
brs []blockRef
}
m := make(map[string]*blockRefs, maxSeriesCount)
orderedMetricNames := make([]string, 0, maxSeriesCount)
blocksRead := 0
samples := 0
tbf := getTmpBlocksFile()
var buf []byte
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
br := sr.MetricBlockRef.BlockRef
samples += br.RowsCount()
if *maxSamplesPerQuery > 0 && samples > *maxSamplesPerQuery {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot select more than -search.maxSamplesPerQuery=%d samples; possible solutions: to increase the -search.maxSamplesPerQuery; to reduce time range for the query; to use more specific label filters in order to select lower number of series", *maxSamplesPerQuery)
}
buf = br.Marshal(buf[:0])
addr, err := tbf.WriteBlockRefData(buf)
if err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot write %d bytes to temporary file: %w", len(buf), err)
}
metricName := bytesutil.InternBytes(sr.MetricBlockRef.MetricName)
brs := m[metricName]
if brs == nil {
brs = &blockRefs{}
brs.brs = brs.brsPrealloc[:0]
}
brs.brs = append(brs.brs, blockRef{
partRef: br.PartRef(),
addr: addr,
})
if len(brs.brs) == 1 {
orderedMetricNames = append(orderedMetricNames, metricName)
m[metricName] = brs
}
}
if err := sr.Error(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
if errors.Is(err, storage.ErrDeadlineExceeded) {
return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
if err := tbf.Finalize(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot finalize temporary file: %w", err)
}
qt.Printf("fetch unique series=%d, blocks=%d, samples=%d, bytes=%d", len(m), blocksRead, samples, tbf.Len())
var rss Results
rss.tr = tr
rss.deadline = deadline
pts := make([]packedTimeseries, len(orderedMetricNames))
for i, metricName := range orderedMetricNames {
pts[i] = packedTimeseries{
metricName: metricName,
brs: m[metricName].brs,
}
}
rss.packedTimeseries = pts
rss.sr = sr
rss.tbf = tbf
return &rss, nil
}
var indexSearchDuration = metrics.NewHistogram(`vm_index_search_duration_seconds`)
type blockRef struct {
partRef storage.PartRef
addr tmpBlockAddr
}
func setupTfss(qt *querytracer.Tracer, tr storage.TimeRange, tagFilterss [][]storage.TagFilter, maxMetrics int, deadline searchutils.Deadline) ([]*storage.TagFilters, error) {
tfss := make([]*storage.TagFilters, 0, len(tagFilterss))
for _, tagFilters := range tagFilterss {
tfs := storage.NewTagFilters()
for i := range tagFilters {
tf := &tagFilters[i]
if string(tf.Key) == "__graphite__" {
query := tf.Value
paths, err := vmstorage.SearchGraphitePaths(qt, tr, query, maxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error when searching for Graphite paths for query %q: %w", query, err)
}
if len(paths) >= maxMetrics {
return nil, fmt.Errorf("more than %d time series match Graphite query %q; "+
"either narrow down the query or increase the corresponding -search.max* command-line flag value", maxMetrics, query)
}
tfs.AddGraphiteQuery(query, paths, tf.IsNegative)
continue
}
if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil {
return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err)
}
}
tfss = append(tfss, tfs)
}
return tfss, nil
}
func applyGraphiteRegexpFilter(filter string, ss []string) ([]string, error) {
// Anchor filter regexp to the beginning of the string as Graphite does.
// See https://github.com/graphite-project/graphite-web/blob/3ad279df5cb90b211953e39161df416e54a84948/webapp/graphite/tags/localdatabase.py#L157
filter = "^(?:" + filter + ")"
re, err := metricsql.CompileRegexp(filter)
if err != nil {
return nil, fmt.Errorf("cannot parse regexp filter=%q: %w", filter, err)
}
dst := ss[:0]
for _, s := range ss {
if re.MatchString(s) {
dst = append(dst, s)
}
}
return dst, nil
}