VictoriaMetrics/lib/workingsetcache/cache.go
Aliaksandr Valialkin 09fc6e22e5 all: use workingsetcache instead of fastcache
This should reduce the amount of RAM required for processing time series
with non-zero churn rate.

The previous cache behavior can be restored with `-cache.oldBehavior` command-line flag.
2019-08-13 21:39:34 +03:00

209 lines
5.3 KiB
Go

package workingsetcache
import (
"flag"
"runtime"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/fastcache"
)
var oldBehavior = flag.Bool("cache.oldBehavior", false, "Whether to use old behaviour for caches. Old behavior can give better resuts "+
"for low-RAM systems serving big number of time series. Systems with enough RAM would consume more RAM when `-cache.oldBehavior` is enabled")
// Cache is a cache for working set entries.
//
// The cache evicts inactive entries after the given expireDuration.
// Recently accessed entries survive expireDuration.
//
// Comparing to fastcache, this cache minimizes the required RAM size
// to values smaller than maxBytes.
type Cache struct {
curr atomic.Value
prev atomic.Value
wg sync.WaitGroup
stopCh chan struct{}
misses uint64
}
// Load loads the cache from filePath and limits its size to maxBytes
// and evicts inactive entires after expireDuration.
//
// Stop must be called on the returned cache when it is no longer needed.
func Load(filePath string, maxBytes int, expireDuration time.Duration) *Cache {
if !*oldBehavior {
// Split maxBytes between curr and prev caches.
maxBytes /= 2
}
curr := fastcache.LoadFromFileOrNew(filePath, maxBytes)
return newWorkingSetCache(curr, maxBytes, expireDuration)
}
// New creates new cache with the given maxBytes size and the given expireDuration
// for inactive entries.
//
// Stop must be called on the returned cache when it is no longer needed.
func New(maxBytes int, expireDuration time.Duration) *Cache {
if !*oldBehavior {
// Split maxBytes between curr and prev caches.
maxBytes /= 2
}
curr := fastcache.New(maxBytes)
return newWorkingSetCache(curr, maxBytes, expireDuration)
}
func newWorkingSetCache(curr *fastcache.Cache, maxBytes int, expireDuration time.Duration) *Cache {
prev := fastcache.New(1024)
var c Cache
c.curr.Store(curr)
c.prev.Store(prev)
c.stopCh = make(chan struct{})
c.wg.Add(1)
go func() {
defer c.wg.Done()
t := time.NewTicker(expireDuration / 2)
for {
select {
case <-c.stopCh:
return
case <-t.C:
}
if *oldBehavior {
// Keep the curr cache for old behavior.
continue
}
// Do not reuse prev cache, since it can have too big capacity.
prev := c.prev.Load().(*fastcache.Cache)
prev.Reset()
curr := c.curr.Load().(*fastcache.Cache)
c.prev.Store(curr)
curr = fastcache.New(maxBytes)
c.curr.Store(curr)
}
}()
return &c
}
// Save safes the cache to filePath.
func (c *Cache) Save(filePath string) error {
curr := c.curr.Load().(*fastcache.Cache)
concurrency := runtime.GOMAXPROCS(-1)
return curr.SaveToFileConcurrent(filePath, concurrency)
}
// Stop stops the cache.
//
// The cache cannot be used after the Stop call.
func (c *Cache) Stop() {
close(c.stopCh)
c.wg.Wait()
c.Reset()
}
// Reset resets the cache.
func (c *Cache) Reset() {
prev := c.prev.Load().(*fastcache.Cache)
prev.Reset()
curr := c.curr.Load().(*fastcache.Cache)
curr.Reset()
c.misses = 0
}
// UpdateStats updates fcs with cache stats.
func (c *Cache) UpdateStats(fcs *fastcache.Stats) {
curr := c.curr.Load().(*fastcache.Cache)
fcsOrig := *fcs
curr.UpdateStats(fcs)
if *oldBehavior {
return
}
fcs.Misses = fcsOrig.Misses + atomic.LoadUint64(&c.misses)
fcsOrig.Reset()
prev := c.prev.Load().(*fastcache.Cache)
prev.UpdateStats(&fcsOrig)
fcs.EntriesCount += fcsOrig.EntriesCount
fcs.BytesSize += fcsOrig.BytesSize
}
// Get appends the found value for the given key to dst and returns the result.
func (c *Cache) Get(dst, key []byte) []byte {
curr := c.curr.Load().(*fastcache.Cache)
result := curr.Get(dst, key)
if len(result) > len(dst) {
// Fast path - the entry is found in the current cache.
return result
}
if *oldBehavior {
return result
}
// Search for the entry in the previous cache.
prev := c.prev.Load().(*fastcache.Cache)
result = prev.Get(dst, key)
if len(result) <= len(dst) {
// Nothing found.
atomic.AddUint64(&c.misses, 1)
return result
}
// Cache the found entry in the current cache.
curr.Set(key, result[len(dst):])
return result
}
// Has verifies whether the cahce contains the given key.
func (c *Cache) Has(key []byte) bool {
curr := c.curr.Load().(*fastcache.Cache)
if curr.Has(key) {
return true
}
if *oldBehavior {
return false
}
prev := c.prev.Load().(*fastcache.Cache)
return prev.Has(key)
}
// Set sets the given value for the given key.
func (c *Cache) Set(key, value []byte) {
curr := c.curr.Load().(*fastcache.Cache)
curr.Set(key, value)
}
// GetBig appends the found value for the given key to dst and returns the result.
func (c *Cache) GetBig(dst, key []byte) []byte {
curr := c.curr.Load().(*fastcache.Cache)
result := curr.GetBig(dst, key)
if len(result) > len(dst) {
// Fast path - the entry is found in the current cache.
return result
}
if *oldBehavior {
return result
}
// Search for the entry in the previous cache.
prev := c.prev.Load().(*fastcache.Cache)
result = prev.GetBig(dst, key)
if len(result) <= len(dst) {
// Nothing found.
atomic.AddUint64(&c.misses, 1)
return result
}
// Cache the found entry in the current cache.
curr.SetBig(key, result[len(dst):])
return result
}
// SetBig sets the given value for the given key.
func (c *Cache) SetBig(key, value []byte) {
curr := c.curr.Load().(*fastcache.Cache)
curr.SetBig(key, value)
}