mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
d5c180e680
It is better developing vmctl tool in VictoriaMetrics repository, so it could be released together with the rest of vmutils tools such as vmalert, vmagent, vmbackup, vmrestore and vmauth.
614 lines
19 KiB
Go
614 lines
19 KiB
Go
// Copyright 2016 The Oklog Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package ulid
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"database/sql/driver"
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"math"
|
|
"math/bits"
|
|
"math/rand"
|
|
"time"
|
|
)
|
|
|
|
/*
|
|
An ULID is a 16 byte Universally Unique Lexicographically Sortable Identifier
|
|
|
|
The components are encoded as 16 octets.
|
|
Each component is encoded with the MSB first (network byte order).
|
|
|
|
0 1 2 3
|
|
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| 32_bit_uint_time_high |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| 16_bit_uint_time_low | 16_bit_uint_random |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| 32_bit_uint_random |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| 32_bit_uint_random |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
*/
|
|
type ULID [16]byte
|
|
|
|
var (
|
|
// ErrDataSize is returned when parsing or unmarshaling ULIDs with the wrong
|
|
// data size.
|
|
ErrDataSize = errors.New("ulid: bad data size when unmarshaling")
|
|
|
|
// ErrInvalidCharacters is returned when parsing or unmarshaling ULIDs with
|
|
// invalid Base32 encodings.
|
|
ErrInvalidCharacters = errors.New("ulid: bad data characters when unmarshaling")
|
|
|
|
// ErrBufferSize is returned when marshalling ULIDs to a buffer of insufficient
|
|
// size.
|
|
ErrBufferSize = errors.New("ulid: bad buffer size when marshaling")
|
|
|
|
// ErrBigTime is returned when constructing an ULID with a time that is larger
|
|
// than MaxTime.
|
|
ErrBigTime = errors.New("ulid: time too big")
|
|
|
|
// ErrOverflow is returned when unmarshaling a ULID whose first character is
|
|
// larger than 7, thereby exceeding the valid bit depth of 128.
|
|
ErrOverflow = errors.New("ulid: overflow when unmarshaling")
|
|
|
|
// ErrMonotonicOverflow is returned by a Monotonic entropy source when
|
|
// incrementing the previous ULID's entropy bytes would result in overflow.
|
|
ErrMonotonicOverflow = errors.New("ulid: monotonic entropy overflow")
|
|
|
|
// ErrScanValue is returned when the value passed to scan cannot be unmarshaled
|
|
// into the ULID.
|
|
ErrScanValue = errors.New("ulid: source value must be a string or byte slice")
|
|
)
|
|
|
|
// New returns an ULID with the given Unix milliseconds timestamp and an
|
|
// optional entropy source. Use the Timestamp function to convert
|
|
// a time.Time to Unix milliseconds.
|
|
//
|
|
// ErrBigTime is returned when passing a timestamp bigger than MaxTime.
|
|
// Reading from the entropy source may also return an error.
|
|
func New(ms uint64, entropy io.Reader) (id ULID, err error) {
|
|
if err = id.SetTime(ms); err != nil {
|
|
return id, err
|
|
}
|
|
|
|
switch e := entropy.(type) {
|
|
case nil:
|
|
return id, err
|
|
case *monotonic:
|
|
err = e.MonotonicRead(ms, id[6:])
|
|
default:
|
|
_, err = io.ReadFull(e, id[6:])
|
|
}
|
|
|
|
return id, err
|
|
}
|
|
|
|
// MustNew is a convenience function equivalent to New that panics on failure
|
|
// instead of returning an error.
|
|
func MustNew(ms uint64, entropy io.Reader) ULID {
|
|
id, err := New(ms, entropy)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return id
|
|
}
|
|
|
|
// Parse parses an encoded ULID, returning an error in case of failure.
|
|
//
|
|
// ErrDataSize is returned if the len(ulid) is different from an encoded
|
|
// ULID's length. Invalid encodings produce undefined ULIDs. For a version that
|
|
// returns an error instead, see ParseStrict.
|
|
func Parse(ulid string) (id ULID, err error) {
|
|
return id, parse([]byte(ulid), false, &id)
|
|
}
|
|
|
|
// ParseStrict parses an encoded ULID, returning an error in case of failure.
|
|
//
|
|
// It is like Parse, but additionally validates that the parsed ULID consists
|
|
// only of valid base32 characters. It is slightly slower than Parse.
|
|
//
|
|
// ErrDataSize is returned if the len(ulid) is different from an encoded
|
|
// ULID's length. Invalid encodings return ErrInvalidCharacters.
|
|
func ParseStrict(ulid string) (id ULID, err error) {
|
|
return id, parse([]byte(ulid), true, &id)
|
|
}
|
|
|
|
func parse(v []byte, strict bool, id *ULID) error {
|
|
// Check if a base32 encoded ULID is the right length.
|
|
if len(v) != EncodedSize {
|
|
return ErrDataSize
|
|
}
|
|
|
|
// Check if all the characters in a base32 encoded ULID are part of the
|
|
// expected base32 character set.
|
|
if strict &&
|
|
(dec[v[0]] == 0xFF ||
|
|
dec[v[1]] == 0xFF ||
|
|
dec[v[2]] == 0xFF ||
|
|
dec[v[3]] == 0xFF ||
|
|
dec[v[4]] == 0xFF ||
|
|
dec[v[5]] == 0xFF ||
|
|
dec[v[6]] == 0xFF ||
|
|
dec[v[7]] == 0xFF ||
|
|
dec[v[8]] == 0xFF ||
|
|
dec[v[9]] == 0xFF ||
|
|
dec[v[10]] == 0xFF ||
|
|
dec[v[11]] == 0xFF ||
|
|
dec[v[12]] == 0xFF ||
|
|
dec[v[13]] == 0xFF ||
|
|
dec[v[14]] == 0xFF ||
|
|
dec[v[15]] == 0xFF ||
|
|
dec[v[16]] == 0xFF ||
|
|
dec[v[17]] == 0xFF ||
|
|
dec[v[18]] == 0xFF ||
|
|
dec[v[19]] == 0xFF ||
|
|
dec[v[20]] == 0xFF ||
|
|
dec[v[21]] == 0xFF ||
|
|
dec[v[22]] == 0xFF ||
|
|
dec[v[23]] == 0xFF ||
|
|
dec[v[24]] == 0xFF ||
|
|
dec[v[25]] == 0xFF) {
|
|
return ErrInvalidCharacters
|
|
}
|
|
|
|
// Check if the first character in a base32 encoded ULID will overflow. This
|
|
// happens because the base32 representation encodes 130 bits, while the
|
|
// ULID is only 128 bits.
|
|
//
|
|
// See https://github.com/oklog/ulid/issues/9 for details.
|
|
if v[0] > '7' {
|
|
return ErrOverflow
|
|
}
|
|
|
|
// Use an optimized unrolled loop (from https://github.com/RobThree/NUlid)
|
|
// to decode a base32 ULID.
|
|
|
|
// 6 bytes timestamp (48 bits)
|
|
(*id)[0] = ((dec[v[0]] << 5) | dec[v[1]])
|
|
(*id)[1] = ((dec[v[2]] << 3) | (dec[v[3]] >> 2))
|
|
(*id)[2] = ((dec[v[3]] << 6) | (dec[v[4]] << 1) | (dec[v[5]] >> 4))
|
|
(*id)[3] = ((dec[v[5]] << 4) | (dec[v[6]] >> 1))
|
|
(*id)[4] = ((dec[v[6]] << 7) | (dec[v[7]] << 2) | (dec[v[8]] >> 3))
|
|
(*id)[5] = ((dec[v[8]] << 5) | dec[v[9]])
|
|
|
|
// 10 bytes of entropy (80 bits)
|
|
(*id)[6] = ((dec[v[10]] << 3) | (dec[v[11]] >> 2))
|
|
(*id)[7] = ((dec[v[11]] << 6) | (dec[v[12]] << 1) | (dec[v[13]] >> 4))
|
|
(*id)[8] = ((dec[v[13]] << 4) | (dec[v[14]] >> 1))
|
|
(*id)[9] = ((dec[v[14]] << 7) | (dec[v[15]] << 2) | (dec[v[16]] >> 3))
|
|
(*id)[10] = ((dec[v[16]] << 5) | dec[v[17]])
|
|
(*id)[11] = ((dec[v[18]] << 3) | dec[v[19]]>>2)
|
|
(*id)[12] = ((dec[v[19]] << 6) | (dec[v[20]] << 1) | (dec[v[21]] >> 4))
|
|
(*id)[13] = ((dec[v[21]] << 4) | (dec[v[22]] >> 1))
|
|
(*id)[14] = ((dec[v[22]] << 7) | (dec[v[23]] << 2) | (dec[v[24]] >> 3))
|
|
(*id)[15] = ((dec[v[24]] << 5) | dec[v[25]])
|
|
|
|
return nil
|
|
}
|
|
|
|
// MustParse is a convenience function equivalent to Parse that panics on failure
|
|
// instead of returning an error.
|
|
func MustParse(ulid string) ULID {
|
|
id, err := Parse(ulid)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return id
|
|
}
|
|
|
|
// MustParseStrict is a convenience function equivalent to ParseStrict that
|
|
// panics on failure instead of returning an error.
|
|
func MustParseStrict(ulid string) ULID {
|
|
id, err := ParseStrict(ulid)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return id
|
|
}
|
|
|
|
// String returns a lexicographically sortable string encoded ULID
|
|
// (26 characters, non-standard base 32) e.g. 01AN4Z07BY79KA1307SR9X4MV3
|
|
// Format: tttttttttteeeeeeeeeeeeeeee where t is time and e is entropy
|
|
func (id ULID) String() string {
|
|
ulid := make([]byte, EncodedSize)
|
|
_ = id.MarshalTextTo(ulid)
|
|
return string(ulid)
|
|
}
|
|
|
|
// MarshalBinary implements the encoding.BinaryMarshaler interface by
|
|
// returning the ULID as a byte slice.
|
|
func (id ULID) MarshalBinary() ([]byte, error) {
|
|
ulid := make([]byte, len(id))
|
|
return ulid, id.MarshalBinaryTo(ulid)
|
|
}
|
|
|
|
// MarshalBinaryTo writes the binary encoding of the ULID to the given buffer.
|
|
// ErrBufferSize is returned when the len(dst) != 16.
|
|
func (id ULID) MarshalBinaryTo(dst []byte) error {
|
|
if len(dst) != len(id) {
|
|
return ErrBufferSize
|
|
}
|
|
|
|
copy(dst, id[:])
|
|
return nil
|
|
}
|
|
|
|
// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface by
|
|
// copying the passed data and converting it to an ULID. ErrDataSize is
|
|
// returned if the data length is different from ULID length.
|
|
func (id *ULID) UnmarshalBinary(data []byte) error {
|
|
if len(data) != len(*id) {
|
|
return ErrDataSize
|
|
}
|
|
|
|
copy((*id)[:], data)
|
|
return nil
|
|
}
|
|
|
|
// Encoding is the base 32 encoding alphabet used in ULID strings.
|
|
const Encoding = "0123456789ABCDEFGHJKMNPQRSTVWXYZ"
|
|
|
|
// MarshalText implements the encoding.TextMarshaler interface by
|
|
// returning the string encoded ULID.
|
|
func (id ULID) MarshalText() ([]byte, error) {
|
|
ulid := make([]byte, EncodedSize)
|
|
return ulid, id.MarshalTextTo(ulid)
|
|
}
|
|
|
|
// MarshalTextTo writes the ULID as a string to the given buffer.
|
|
// ErrBufferSize is returned when the len(dst) != 26.
|
|
func (id ULID) MarshalTextTo(dst []byte) error {
|
|
// Optimized unrolled loop ahead.
|
|
// From https://github.com/RobThree/NUlid
|
|
|
|
if len(dst) != EncodedSize {
|
|
return ErrBufferSize
|
|
}
|
|
|
|
// 10 byte timestamp
|
|
dst[0] = Encoding[(id[0]&224)>>5]
|
|
dst[1] = Encoding[id[0]&31]
|
|
dst[2] = Encoding[(id[1]&248)>>3]
|
|
dst[3] = Encoding[((id[1]&7)<<2)|((id[2]&192)>>6)]
|
|
dst[4] = Encoding[(id[2]&62)>>1]
|
|
dst[5] = Encoding[((id[2]&1)<<4)|((id[3]&240)>>4)]
|
|
dst[6] = Encoding[((id[3]&15)<<1)|((id[4]&128)>>7)]
|
|
dst[7] = Encoding[(id[4]&124)>>2]
|
|
dst[8] = Encoding[((id[4]&3)<<3)|((id[5]&224)>>5)]
|
|
dst[9] = Encoding[id[5]&31]
|
|
|
|
// 16 bytes of entropy
|
|
dst[10] = Encoding[(id[6]&248)>>3]
|
|
dst[11] = Encoding[((id[6]&7)<<2)|((id[7]&192)>>6)]
|
|
dst[12] = Encoding[(id[7]&62)>>1]
|
|
dst[13] = Encoding[((id[7]&1)<<4)|((id[8]&240)>>4)]
|
|
dst[14] = Encoding[((id[8]&15)<<1)|((id[9]&128)>>7)]
|
|
dst[15] = Encoding[(id[9]&124)>>2]
|
|
dst[16] = Encoding[((id[9]&3)<<3)|((id[10]&224)>>5)]
|
|
dst[17] = Encoding[id[10]&31]
|
|
dst[18] = Encoding[(id[11]&248)>>3]
|
|
dst[19] = Encoding[((id[11]&7)<<2)|((id[12]&192)>>6)]
|
|
dst[20] = Encoding[(id[12]&62)>>1]
|
|
dst[21] = Encoding[((id[12]&1)<<4)|((id[13]&240)>>4)]
|
|
dst[22] = Encoding[((id[13]&15)<<1)|((id[14]&128)>>7)]
|
|
dst[23] = Encoding[(id[14]&124)>>2]
|
|
dst[24] = Encoding[((id[14]&3)<<3)|((id[15]&224)>>5)]
|
|
dst[25] = Encoding[id[15]&31]
|
|
|
|
return nil
|
|
}
|
|
|
|
// Byte to index table for O(1) lookups when unmarshaling.
|
|
// We use 0xFF as sentinel value for invalid indexes.
|
|
var dec = [...]byte{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01,
|
|
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
|
|
0x0F, 0x10, 0x11, 0xFF, 0x12, 0x13, 0xFF, 0x14, 0x15, 0xFF,
|
|
0x16, 0x17, 0x18, 0x19, 0x1A, 0xFF, 0x1B, 0x1C, 0x1D, 0x1E,
|
|
0x1F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0A, 0x0B, 0x0C,
|
|
0x0D, 0x0E, 0x0F, 0x10, 0x11, 0xFF, 0x12, 0x13, 0xFF, 0x14,
|
|
0x15, 0xFF, 0x16, 0x17, 0x18, 0x19, 0x1A, 0xFF, 0x1B, 0x1C,
|
|
0x1D, 0x1E, 0x1F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
}
|
|
|
|
// EncodedSize is the length of a text encoded ULID.
|
|
const EncodedSize = 26
|
|
|
|
// UnmarshalText implements the encoding.TextUnmarshaler interface by
|
|
// parsing the data as string encoded ULID.
|
|
//
|
|
// ErrDataSize is returned if the len(v) is different from an encoded
|
|
// ULID's length. Invalid encodings produce undefined ULIDs.
|
|
func (id *ULID) UnmarshalText(v []byte) error {
|
|
return parse(v, false, id)
|
|
}
|
|
|
|
// Time returns the Unix time in milliseconds encoded in the ULID.
|
|
// Use the top level Time function to convert the returned value to
|
|
// a time.Time.
|
|
func (id ULID) Time() uint64 {
|
|
return uint64(id[5]) | uint64(id[4])<<8 |
|
|
uint64(id[3])<<16 | uint64(id[2])<<24 |
|
|
uint64(id[1])<<32 | uint64(id[0])<<40
|
|
}
|
|
|
|
// maxTime is the maximum Unix time in milliseconds that can be
|
|
// represented in an ULID.
|
|
var maxTime = ULID{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}.Time()
|
|
|
|
// MaxTime returns the maximum Unix time in milliseconds that
|
|
// can be encoded in an ULID.
|
|
func MaxTime() uint64 { return maxTime }
|
|
|
|
// Now is a convenience function that returns the current
|
|
// UTC time in Unix milliseconds. Equivalent to:
|
|
// Timestamp(time.Now().UTC())
|
|
func Now() uint64 { return Timestamp(time.Now().UTC()) }
|
|
|
|
// Timestamp converts a time.Time to Unix milliseconds.
|
|
//
|
|
// Because of the way ULID stores time, times from the year
|
|
// 10889 produces undefined results.
|
|
func Timestamp(t time.Time) uint64 {
|
|
return uint64(t.Unix())*1000 +
|
|
uint64(t.Nanosecond()/int(time.Millisecond))
|
|
}
|
|
|
|
// Time converts Unix milliseconds in the format
|
|
// returned by the Timestamp function to a time.Time.
|
|
func Time(ms uint64) time.Time {
|
|
s := int64(ms / 1e3)
|
|
ns := int64((ms % 1e3) * 1e6)
|
|
return time.Unix(s, ns)
|
|
}
|
|
|
|
// SetTime sets the time component of the ULID to the given Unix time
|
|
// in milliseconds.
|
|
func (id *ULID) SetTime(ms uint64) error {
|
|
if ms > maxTime {
|
|
return ErrBigTime
|
|
}
|
|
|
|
(*id)[0] = byte(ms >> 40)
|
|
(*id)[1] = byte(ms >> 32)
|
|
(*id)[2] = byte(ms >> 24)
|
|
(*id)[3] = byte(ms >> 16)
|
|
(*id)[4] = byte(ms >> 8)
|
|
(*id)[5] = byte(ms)
|
|
|
|
return nil
|
|
}
|
|
|
|
// Entropy returns the entropy from the ULID.
|
|
func (id ULID) Entropy() []byte {
|
|
e := make([]byte, 10)
|
|
copy(e, id[6:])
|
|
return e
|
|
}
|
|
|
|
// SetEntropy sets the ULID entropy to the passed byte slice.
|
|
// ErrDataSize is returned if len(e) != 10.
|
|
func (id *ULID) SetEntropy(e []byte) error {
|
|
if len(e) != 10 {
|
|
return ErrDataSize
|
|
}
|
|
|
|
copy((*id)[6:], e)
|
|
return nil
|
|
}
|
|
|
|
// Compare returns an integer comparing id and other lexicographically.
|
|
// The result will be 0 if id==other, -1 if id < other, and +1 if id > other.
|
|
func (id ULID) Compare(other ULID) int {
|
|
return bytes.Compare(id[:], other[:])
|
|
}
|
|
|
|
// Scan implements the sql.Scanner interface. It supports scanning
|
|
// a string or byte slice.
|
|
func (id *ULID) Scan(src interface{}) error {
|
|
switch x := src.(type) {
|
|
case nil:
|
|
return nil
|
|
case string:
|
|
return id.UnmarshalText([]byte(x))
|
|
case []byte:
|
|
return id.UnmarshalBinary(x)
|
|
}
|
|
|
|
return ErrScanValue
|
|
}
|
|
|
|
// Value implements the sql/driver.Valuer interface. This returns the value
|
|
// represented as a byte slice. If instead a string is desirable, a wrapper
|
|
// type can be created that calls String().
|
|
//
|
|
// // stringValuer wraps a ULID as a string-based driver.Valuer.
|
|
// type stringValuer ULID
|
|
//
|
|
// func (id stringValuer) Value() (driver.Value, error) {
|
|
// return ULID(id).String(), nil
|
|
// }
|
|
//
|
|
// // Example usage.
|
|
// db.Exec("...", stringValuer(id))
|
|
func (id ULID) Value() (driver.Value, error) {
|
|
return id.MarshalBinary()
|
|
}
|
|
|
|
// Monotonic returns an entropy source that is guaranteed to yield
|
|
// strictly increasing entropy bytes for the same ULID timestamp.
|
|
// On conflicts, the previous ULID entropy is incremented with a
|
|
// random number between 1 and `inc` (inclusive).
|
|
//
|
|
// The provided entropy source must actually yield random bytes or else
|
|
// monotonic reads are not guaranteed to terminate, since there isn't
|
|
// enough randomness to compute an increment number.
|
|
//
|
|
// When `inc == 0`, it'll be set to a secure default of `math.MaxUint32`.
|
|
// The lower the value of `inc`, the easier the next ULID within the
|
|
// same millisecond is to guess. If your code depends on ULIDs having
|
|
// secure entropy bytes, then don't go under this default unless you know
|
|
// what you're doing.
|
|
//
|
|
// The returned io.Reader isn't safe for concurrent use.
|
|
func Monotonic(entropy io.Reader, inc uint64) io.Reader {
|
|
m := monotonic{
|
|
Reader: bufio.NewReader(entropy),
|
|
inc: inc,
|
|
}
|
|
|
|
if m.inc == 0 {
|
|
m.inc = math.MaxUint32
|
|
}
|
|
|
|
if rng, ok := entropy.(*rand.Rand); ok {
|
|
m.rng = rng
|
|
}
|
|
|
|
return &m
|
|
}
|
|
|
|
type monotonic struct {
|
|
io.Reader
|
|
ms uint64
|
|
inc uint64
|
|
entropy uint80
|
|
rand [8]byte
|
|
rng *rand.Rand
|
|
}
|
|
|
|
func (m *monotonic) MonotonicRead(ms uint64, entropy []byte) (err error) {
|
|
if !m.entropy.IsZero() && m.ms == ms {
|
|
err = m.increment()
|
|
m.entropy.AppendTo(entropy)
|
|
} else if _, err = io.ReadFull(m.Reader, entropy); err == nil {
|
|
m.ms = ms
|
|
m.entropy.SetBytes(entropy)
|
|
}
|
|
return err
|
|
}
|
|
|
|
// increment the previous entropy number with a random number
|
|
// of up to m.inc (inclusive).
|
|
func (m *monotonic) increment() error {
|
|
if inc, err := m.random(); err != nil {
|
|
return err
|
|
} else if m.entropy.Add(inc) {
|
|
return ErrMonotonicOverflow
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// random returns a uniform random value in [1, m.inc), reading entropy
|
|
// from m.Reader. When m.inc == 0 || m.inc == 1, it returns 1.
|
|
// Adapted from: https://golang.org/pkg/crypto/rand/#Int
|
|
func (m *monotonic) random() (inc uint64, err error) {
|
|
if m.inc <= 1 {
|
|
return 1, nil
|
|
}
|
|
|
|
// Fast path for using a underlying rand.Rand directly.
|
|
if m.rng != nil {
|
|
// Range: [1, m.inc)
|
|
return 1 + uint64(m.rng.Int63n(int64(m.inc))), nil
|
|
}
|
|
|
|
// bitLen is the maximum bit length needed to encode a value < m.inc.
|
|
bitLen := bits.Len64(m.inc)
|
|
|
|
// byteLen is the maximum byte length needed to encode a value < m.inc.
|
|
byteLen := uint(bitLen+7) / 8
|
|
|
|
// msbitLen is the number of bits in the most significant byte of m.inc-1.
|
|
msbitLen := uint(bitLen % 8)
|
|
if msbitLen == 0 {
|
|
msbitLen = 8
|
|
}
|
|
|
|
for inc == 0 || inc >= m.inc {
|
|
if _, err = io.ReadFull(m.Reader, m.rand[:byteLen]); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Clear bits in the first byte to increase the probability
|
|
// that the candidate is < m.inc.
|
|
m.rand[0] &= uint8(int(1<<msbitLen) - 1)
|
|
|
|
// Convert the read bytes into an uint64 with byteLen
|
|
// Optimized unrolled loop.
|
|
switch byteLen {
|
|
case 1:
|
|
inc = uint64(m.rand[0])
|
|
case 2:
|
|
inc = uint64(binary.LittleEndian.Uint16(m.rand[:2]))
|
|
case 3, 4:
|
|
inc = uint64(binary.LittleEndian.Uint32(m.rand[:4]))
|
|
case 5, 6, 7, 8:
|
|
inc = uint64(binary.LittleEndian.Uint64(m.rand[:8]))
|
|
}
|
|
}
|
|
|
|
// Range: [1, m.inc)
|
|
return 1 + inc, nil
|
|
}
|
|
|
|
type uint80 struct {
|
|
Hi uint16
|
|
Lo uint64
|
|
}
|
|
|
|
func (u *uint80) SetBytes(bs []byte) {
|
|
u.Hi = binary.BigEndian.Uint16(bs[:2])
|
|
u.Lo = binary.BigEndian.Uint64(bs[2:])
|
|
}
|
|
|
|
func (u *uint80) AppendTo(bs []byte) {
|
|
binary.BigEndian.PutUint16(bs[:2], u.Hi)
|
|
binary.BigEndian.PutUint64(bs[2:], u.Lo)
|
|
}
|
|
|
|
func (u *uint80) Add(n uint64) (overflow bool) {
|
|
lo, hi := u.Lo, u.Hi
|
|
if u.Lo += n; u.Lo < lo {
|
|
u.Hi++
|
|
}
|
|
return u.Hi < hi
|
|
}
|
|
|
|
func (u uint80) IsZero() bool {
|
|
return u.Hi == 0 && u.Lo == 0
|
|
}
|