VictoriaMetrics/vendor/github.com/grafana/regexp/backtrack.go
Dmytro Kozlov 05cf8a6ecc
vmctl: support of the remote read protocol (#3232)
vmctl: support of the remote read protocol

Signed-off-by: hagen1778 <roman@victoriametrics.com>
Co-authored-by: hagen1778 <roman@victoriametrics.com>
2022-11-29 22:53:28 +01:00

367 lines
8.8 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// backtrack is a regular expression search with submatch
// tracking for small regular expressions and texts. It allocates
// a bit vector with (length of input) * (length of prog) bits,
// to make sure it never explores the same (character position, instruction)
// state multiple times. This limits the search to run in time linear in
// the length of the test.
//
// backtrack is a fast replacement for the NFA code on small
// regexps when onepass cannot be used.
package regexp
import (
"regexp/syntax"
"sync"
)
// A job is an entry on the backtracker's job stack. It holds
// the instruction pc and the position in the input.
type job struct {
pc uint32
arg bool
pos int
}
const (
visitedBits = 32
maxBacktrackProg = 500 // len(prog.Inst) <= max
maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
)
// bitState holds state for the backtracker.
type bitState struct {
end int
cap []int
matchcap []int
jobs []job
visited []uint32
inputs inputs
}
var bitStatePool sync.Pool
func newBitState() *bitState {
b, ok := bitStatePool.Get().(*bitState)
if !ok {
b = new(bitState)
}
return b
}
func freeBitState(b *bitState) {
b.inputs.clear()
bitStatePool.Put(b)
}
// maxBitStateLen returns the maximum length of a string to search with
// the backtracker using prog.
func maxBitStateLen(prog *syntax.Prog) int {
if !shouldBacktrack(prog) {
return 0
}
return maxBacktrackVector / len(prog.Inst)
}
// shouldBacktrack reports whether the program is too
// long for the backtracker to run.
func shouldBacktrack(prog *syntax.Prog) bool {
return len(prog.Inst) <= maxBacktrackProg
}
// reset resets the state of the backtracker.
// end is the end position in the input.
// ncap is the number of captures.
func (b *bitState) reset(prog *syntax.Prog, end int, ncap int) {
b.end = end
if cap(b.jobs) == 0 {
b.jobs = make([]job, 0, 256)
} else {
b.jobs = b.jobs[:0]
}
visitedSize := (len(prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
if cap(b.visited) < visitedSize {
b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
} else {
b.visited = b.visited[:visitedSize]
for i := range b.visited {
b.visited[i] = 0
}
}
if cap(b.cap) < ncap {
b.cap = make([]int, ncap)
} else {
b.cap = b.cap[:ncap]
}
for i := range b.cap {
b.cap[i] = -1
}
if cap(b.matchcap) < ncap {
b.matchcap = make([]int, ncap)
} else {
b.matchcap = b.matchcap[:ncap]
}
for i := range b.matchcap {
b.matchcap[i] = -1
}
}
// shouldVisit reports whether the combination of (pc, pos) has not
// been visited yet.
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
n := uint(int(pc)*(b.end+1) + pos)
if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
return false
}
b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
return true
}
// push pushes (pc, pos, arg) onto the job stack if it should be
// visited.
func (b *bitState) push(re *Regexp, pc uint32, pos int, arg bool) {
// Only check shouldVisit when arg is false.
// When arg is true, we are continuing a previous visit.
if re.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) {
b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
}
}
// tryBacktrack runs a backtracking search starting at pos.
func (re *Regexp) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
longest := re.longest
b.push(re, pc, pos, false)
for len(b.jobs) > 0 {
l := len(b.jobs) - 1
// Pop job off the stack.
pc := b.jobs[l].pc
pos := b.jobs[l].pos
arg := b.jobs[l].arg
b.jobs = b.jobs[:l]
// Optimization: rather than push and pop,
// code that is going to Push and continue
// the loop simply updates ip, p, and arg
// and jumps to CheckAndLoop. We have to
// do the ShouldVisit check that Push
// would have, but we avoid the stack
// manipulation.
goto Skip
CheckAndLoop:
if !b.shouldVisit(pc, pos) {
continue
}
Skip:
inst := &re.prog.Inst[pc]
switch inst.Op {
default:
panic("bad inst")
case syntax.InstFail:
panic("unexpected InstFail")
case syntax.InstAlt:
// Cannot just
// b.push(inst.Out, pos, false)
// b.push(inst.Arg, pos, false)
// If during the processing of inst.Out, we encounter
// inst.Arg via another path, we want to process it then.
// Pushing it here will inhibit that. Instead, re-push
// inst with arg==true as a reminder to push inst.Arg out
// later.
if arg {
// Finished inst.Out; try inst.Arg.
arg = false
pc = inst.Arg
goto CheckAndLoop
} else {
b.push(re, pc, pos, true)
pc = inst.Out
goto CheckAndLoop
}
case syntax.InstAltMatch:
// One opcode consumes runes; the other leads to match.
switch re.prog.Inst[inst.Out].Op {
case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
// inst.Arg is the match.
b.push(re, inst.Arg, pos, false)
pc = inst.Arg
pos = b.end
goto CheckAndLoop
}
// inst.Out is the match - non-greedy
b.push(re, inst.Out, b.end, false)
pc = inst.Out
goto CheckAndLoop
case syntax.InstRune:
r, width := i.step(pos)
if !inst.MatchRune(r) {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRune1:
r, width := i.step(pos)
if r != inst.Rune[0] {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRuneAnyNotNL:
r, width := i.step(pos)
if r == '\n' || r == endOfText {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRuneAny:
r, width := i.step(pos)
if r == endOfText {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstCapture:
if arg {
// Finished inst.Out; restore the old value.
b.cap[inst.Arg] = pos
continue
} else {
if inst.Arg < uint32(len(b.cap)) {
// Capture pos to register, but save old value.
b.push(re, pc, b.cap[inst.Arg], true) // come back when we're done.
b.cap[inst.Arg] = pos
}
pc = inst.Out
goto CheckAndLoop
}
case syntax.InstEmptyWidth:
flag := i.context(pos)
if !flag.match(syntax.EmptyOp(inst.Arg)) {
continue
}
pc = inst.Out
goto CheckAndLoop
case syntax.InstNop:
pc = inst.Out
goto CheckAndLoop
case syntax.InstMatch:
// We found a match. If the caller doesn't care
// where the match is, no point going further.
if len(b.cap) == 0 {
return true
}
// Record best match so far.
// Only need to check end point, because this entire
// call is only considering one start position.
if len(b.cap) > 1 {
b.cap[1] = pos
}
if old := b.matchcap[1]; old == -1 || (longest && pos > 0 && pos > old) {
copy(b.matchcap, b.cap)
}
// If going for first match, we're done.
if !longest {
return true
}
// If we used the entire text, no longer match is possible.
if pos == b.end {
return true
}
// Otherwise, continue on in hope of a longer match.
continue
}
}
return longest && len(b.matchcap) > 1 && b.matchcap[1] >= 0
}
// backtrack runs a backtracking search of prog on the input starting at pos.
func (re *Regexp) backtrack(ib []byte, is string, pos int, ncap int, dstCap []int) []int {
startCond := re.cond
if startCond == ^syntax.EmptyOp(0) { // impossible
return nil
}
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
// Anchored match, past beginning of text.
return nil
}
b := newBitState()
i, end := b.inputs.init(nil, ib, is)
b.reset(re.prog, end, ncap)
// Anchored search must start at the beginning of the input
if startCond&syntax.EmptyBeginText != 0 {
if len(b.cap) > 0 {
b.cap[0] = pos
}
if !re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
freeBitState(b)
return nil
}
} else {
// Unanchored search, starting from each possible text position.
// Notice that we have to try the empty string at the end of
// the text, so the loop condition is pos <= end, not pos < end.
// This looks like it's quadratic in the size of the text,
// but we are not clearing visited between calls to TrySearch,
// so no work is duplicated and it ends up still being linear.
width := -1
for ; pos <= end && width != 0; pos += width {
if len(re.prefix) > 0 {
// Match requires literal prefix; fast search for it.
advance := i.index(re, pos)
if advance < 0 {
freeBitState(b)
return nil
}
pos += advance
}
if len(b.cap) > 0 {
b.cap[0] = pos
}
if re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
// Match must be leftmost; done.
goto Match
}
_, width = i.step(pos)
}
freeBitState(b)
return nil
}
Match:
dstCap = append(dstCap, b.matchcap...)
freeBitState(b)
return dstCap
}