mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
ded0c0d3c7
Such small values may be used for removing samples with duplicate timestamps. See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/409 for details.
108 lines
3 KiB
Go
108 lines
3 KiB
Go
package storage
|
|
|
|
import (
|
|
"math"
|
|
"time"
|
|
)
|
|
|
|
// SetMinScrapeIntervalForDeduplication sets the minimum interval for data points during de-duplication.
|
|
//
|
|
// De-duplication is disabled if interval is 0.
|
|
//
|
|
// This function must be called before initializing the storage.
|
|
func SetMinScrapeIntervalForDeduplication(interval time.Duration) {
|
|
minScrapeInterval = interval
|
|
}
|
|
|
|
var minScrapeInterval = time.Duration(0)
|
|
|
|
func getMinDelta() int64 {
|
|
// Use 7/8 of minScrapeInterval in order to preserve proper data points.
|
|
// For instance, if minScrapeInterval=10, the following time series:
|
|
// 10 15 19 25 30 34 41
|
|
// Would be unexpectedly converted to if using 100% of minScrapeInterval:
|
|
// 10 25 41
|
|
// When using 7/8 of minScrapeInterval, it will be converted to the expected:
|
|
// 10 19 30 41
|
|
ms := minScrapeInterval.Milliseconds()
|
|
|
|
// Try calculating scrape interval via integer arithmetic.
|
|
d := (ms / 8) * 7
|
|
if d > 0 {
|
|
return d
|
|
}
|
|
// Too small scrape interval for integer arithmetic. Calculate d using floating-point arithmetic.
|
|
return int64(math.Round(float64(ms) / 8 * 7))
|
|
}
|
|
|
|
// DeduplicateSamples removes samples from src* if they are closer to each other than minScrapeInterval.
|
|
func DeduplicateSamples(srcTimestamps []int64, srcValues []float64) ([]int64, []float64) {
|
|
if minScrapeInterval <= 0 {
|
|
return srcTimestamps, srcValues
|
|
}
|
|
minDelta := getMinDelta()
|
|
if !needsDedup(srcTimestamps, minDelta) {
|
|
// Fast path - nothing to deduplicate
|
|
return srcTimestamps, srcValues
|
|
}
|
|
|
|
// Slow path - dedup data points.
|
|
prevTimestamp := srcTimestamps[0]
|
|
dstTimestamps := srcTimestamps[:1]
|
|
dstValues := srcValues[:1]
|
|
for i := 1; i < len(srcTimestamps); i++ {
|
|
ts := srcTimestamps[i]
|
|
if ts-prevTimestamp < minDelta {
|
|
continue
|
|
}
|
|
dstTimestamps = append(dstTimestamps, ts)
|
|
dstValues = append(dstValues, srcValues[i])
|
|
prevTimestamp = ts
|
|
}
|
|
return dstTimestamps, dstValues
|
|
}
|
|
|
|
func deduplicateSamplesDuringMerge(srcTimestamps, srcValues []int64) ([]int64, []int64) {
|
|
if minScrapeInterval <= 0 {
|
|
return srcTimestamps, srcValues
|
|
}
|
|
if len(srcTimestamps) < 32 {
|
|
// Do not de-duplicate small number of samples during merge
|
|
// in order to improve deduplication accuracy on later stages.
|
|
return srcTimestamps, srcValues
|
|
}
|
|
minDelta := getMinDelta()
|
|
if !needsDedup(srcTimestamps, minDelta) {
|
|
// Fast path - nothing to deduplicate
|
|
return srcTimestamps, srcValues
|
|
}
|
|
|
|
// Slow path - dedup data points.
|
|
prevTimestamp := srcTimestamps[0]
|
|
dstTimestamps := srcTimestamps[:1]
|
|
dstValues := srcValues[:1]
|
|
for i := 1; i < len(srcTimestamps); i++ {
|
|
ts := srcTimestamps[i]
|
|
if ts-prevTimestamp < minDelta {
|
|
continue
|
|
}
|
|
dstTimestamps = append(dstTimestamps, ts)
|
|
dstValues = append(dstValues, srcValues[i])
|
|
prevTimestamp = ts
|
|
}
|
|
return dstTimestamps, dstValues
|
|
}
|
|
|
|
func needsDedup(timestamps []int64, minDelta int64) bool {
|
|
if len(timestamps) == 0 {
|
|
return false
|
|
}
|
|
prevTimestamp := timestamps[0]
|
|
for _, ts := range timestamps[1:] {
|
|
if ts-prevTimestamp < minDelta {
|
|
return true
|
|
}
|
|
prevTimestamp = ts
|
|
}
|
|
return false
|
|
}
|