VictoriaMetrics/lib/streamaggr/streamaggr_test.go
Aliaksandr Valialkin db557b86ee
app/vmagent/remotewrite: follow-up for f153f54d11
- Move the remaining code responsible for stream aggregation initialization from remotewrite.go to streamaggr.go .
  This improves code maintainability a bit.

- Properly shut down streamaggr.Aggregators initialized inside remotewrite.CheckStreamAggrConfigs().
  This prevents from potential resource leaks.

- Use separate functions for initializing and reloading of global stream aggregation and per-remoteWrite.url stream aggregation.
  This makes the code easier to read and maintain. This also fixes INFO and ERROR logs emitted by these functions.

- Add an ability to specify `name` option in every stream aggregation config. This option is used as `name` label
  in metrics exposed by stream aggregation at /metrics page. This simplifies investigation of the exposed metrics.

- Add `path` label additionally to `name`, `url` and `position` labels at metrics exposed by streaming aggregation.
  This label should simplify investigation of the exposed metrics.

- Remove `match` and `group` labels from metrics exposed by streaming aggregation, since they have little practical applicability:
  it is hard to use these labels in query filters and aggregation functions.

- Rename the metric `vm_streamaggr_flushed_samples_total` to less misleading `vm_streamaggr_output_samples_total` .
  This metric shows the number of samples generated by the corresponding streaming aggregation rule.
  This metric has been added in the commit 861852f262 .
  See https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6462

- Remove the metric `vm_streamaggr_stale_samples_total`, since it is unclear how it can be used in practice.
  This metric has been added in the commit 861852f262 .
  See https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6462

- Remove Alias and aggrID fields from streamaggr.Options struct, since these fields aren't related to optional params,
  which could modify the behaviour of the constructed streaming aggregator.
  Convert the Alias field to regular argument passed to LoadFromFile() function, since this argument is mandatory.

- Pass Options arg to LoadFromFile() function by reference, since this structure is quite big.
  This also allows passing nil instead of Options when default options are enough.

- Add `name`, `path`, `url` and `position` labels to `vm_streamaggr_dedup_state_size_bytes` and `vm_streamaggr_dedup_state_items_count` metrics,
  so they have consistent set of labels comparing to the rest of streaming aggregation metrics.

- Convert aggregator.aggrStates field type from `map[string]aggrState` to `[]aggrOutput`, where `aggrOutput` contains the corresponding
  `aggrState` plus all the related metrics (currently only `vm_streamaggr_output_samples_total` metric is exposed with the corresponding
  `output` label per each configured output function). This simplifies and speeds up the code responsible for updating per-output
  metrics. This is a follow-up for the commit 2eb1bc4f81 .
  See https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6604

- Added missing urls to docs ( https://docs.victoriametrics.com/stream-aggregation/ ) in error messages. These urls help users
  figuring out why VictoriaMetrics or vmagent generates the corresponding error messages. The urls were removed for unknown reason
  in the commit 2eb1bc4f81 .

- Fix incorrect update for `vm_streamaggr_output_samples_total` metric in flushCtx.appendSeriesWithExtraLabel() function.
  While at it, reduce memory usage by limiting the maximum number of samples per flush to 10K.

Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5467
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6268
2024-07-15 20:24:01 +02:00

1075 lines
23 KiB
Go

package streamaggr
import (
"fmt"
"sort"
"strconv"
"strings"
"sync"
"testing"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/promrelabel"
)
func TestAggregatorsFailure(t *testing.T) {
f := func(config string) {
t.Helper()
pushFunc := func(_ []prompbmarshal.TimeSeries) {
panic(fmt.Errorf("pushFunc shouldn't be called"))
}
a, err := LoadFromData([]byte(config), pushFunc, nil, "some_alias")
if err == nil {
t.Fatalf("expecting non-nil error")
}
if a != nil {
t.Fatalf("expecting nil a")
}
}
// Invalid config
f(`foobar`)
// Unknown option
f(`
- interval: 1m
outputs: [total]
foobar: baz
`)
// missing interval
f(`
- outputs: [total]
`)
// missing outputs
f(`
- interval: 1m
`)
// Bad interval
f(`
- interval: 1foo
outputs: [total]
`)
// Invalid output
f(`
- interval: 1m
outputs: [foobar]
`)
// Negative interval
f(`
- outputs: [total]
interval: -5m
`)
// Too small interval
f(`
- outputs: [total]
interval: 10ms
`)
// bad dedup_interval
f(`
- interval: 1m
dedup_interval: 1foo
outputs: ["quantiles"]
`)
// interval isn't multiple of dedup_interval
f(`
- interval: 1m
dedup_interval: 35s
outputs: ["quantiles"]
`)
// dedup_interval is bigger than dedup_interval
f(`
- interval: 1m
dedup_interval: 1h
outputs: ["quantiles"]
`)
// bad staleness_interval
f(`
- interval: 1m
staleness_interval: 1foo
outputs: ["quantiles"]
`)
// staleness_interval should be > interval
f(`
- interval: 1m
staleness_interval: 30s
outputs: ["quantiles"]
`)
// staleness_interval should be multiple of interval
f(`
- interval: 1m
staleness_interval: 100s
outputs: ["quantiles"]
`)
// keep_metric_names is set for multiple inputs
f(`
- interval: 1m
keep_metric_names: true
outputs: ["total", "increase"]
`)
// keep_metric_names is set for unsupported input
f(`
- interval: 1m
keep_metric_names: true
outputs: ["histogram_bucket"]
`)
// Invalid input_relabel_configs
f(`
- interval: 1m
outputs: [total]
input_relabel_configs:
- foo: bar
`)
f(`
- interval: 1m
outputs: [total]
input_relabel_configs:
- action: replace
`)
// Invalid output_relabel_configs
f(`
- interval: 1m
outputs: [total]
output_relabel_configs:
- foo: bar
`)
f(`
- interval: 1m
outputs: [total]
output_relabel_configs:
- action: replace
`)
// Both by and without are non-empty
f(`
- interval: 1m
outputs: [total]
by: [foo]
without: [bar]
`)
// Invalid quantiles()
f(`
- interval: 1m
outputs: ["quantiles("]
`)
f(`
- interval: 1m
outputs: ["quantiles()"]
`)
f(`
- interval: 1m
outputs: ["quantiles(foo)"]
`)
f(`
- interval: 1m
outputs: ["quantiles(-0.5)"]
`)
f(`
- interval: 1m
outputs: ["quantiles(1.5)"]
`)
f(`
- interval: 1m
outputs: [total, total]
`)
// "quantiles(0.5)", "quantiles(0.9)" should be set as "quantiles(0.5, 0.9)"
f(`
- interval: 1m
outputs: ["quantiles(0.5)", "quantiles(0.9)"]
`)
}
func TestAggregatorsEqual(t *testing.T) {
f := func(a, b string, expectedResult bool) {
t.Helper()
pushFunc := func(_ []prompbmarshal.TimeSeries) {}
aa, err := LoadFromData([]byte(a), pushFunc, nil, "some_alias")
if err != nil {
t.Fatalf("cannot initialize aggregators: %s", err)
}
ab, err := LoadFromData([]byte(b), pushFunc, nil, "some_alias")
if err != nil {
t.Fatalf("cannot initialize aggregators: %s", err)
}
result := aa.Equal(ab)
if result != expectedResult {
t.Fatalf("unexpected result; got %v; want %v", result, expectedResult)
}
}
f("", "", true)
f(`
- outputs: [total]
interval: 5m
`, ``, false)
f(`
- outputs: [total]
interval: 5m
`, `
- outputs: [total]
interval: 5m
`, true)
f(`
- outputs: [total]
interval: 3m
`, `
- outputs: [total]
interval: 5m
`, false)
f(`
- outputs: [total]
interval: 5m
flush_on_shutdown: true
`, `
- outputs: [total]
interval: 5m
flush_on_shutdown: false
`, false)
f(`
- outputs: [total]
interval: 5m
ignore_first_intervals: 2
`, `
- outputs: [total]
interval: 5m
ignore_first_intervals: 4`, false)
}
func TestAggregatorsSuccess(t *testing.T) {
f := func(config, inputMetrics, outputMetricsExpected, matchIdxsStrExpected string) {
t.Helper()
// Initialize Aggregators
var tssOutput []prompbmarshal.TimeSeries
var tssOutputLock sync.Mutex
pushFunc := func(tss []prompbmarshal.TimeSeries) {
tssOutputLock.Lock()
tssOutput = appendClonedTimeseries(tssOutput, tss)
tssOutputLock.Unlock()
}
opts := &Options{
FlushOnShutdown: true,
NoAlignFlushToInterval: true,
}
a, err := LoadFromData([]byte(config), pushFunc, opts, "some_alias")
if err != nil {
t.Fatalf("cannot initialize aggregators: %s", err)
}
// Push the inputMetrics to Aggregators
offsetMsecs := time.Now().UnixMilli()
tssInput := prompbmarshal.MustParsePromMetrics(inputMetrics, offsetMsecs)
matchIdxs := a.Push(tssInput, nil)
a.MustStop()
// Verify matchIdxs equals to matchIdxsExpected
matchIdxsStr := ""
for _, v := range matchIdxs {
matchIdxsStr += strconv.Itoa(int(v))
}
if matchIdxsStr != matchIdxsStrExpected {
t.Fatalf("unexpected matchIdxs;\ngot\n%s\nwant\n%s", matchIdxsStr, matchIdxsStrExpected)
}
// Verify the tssOutput contains the expected metrics
outputMetrics := timeSeriessToString(tssOutput)
if outputMetrics != outputMetricsExpected {
t.Fatalf("unexpected output metrics;\ngot\n%s\nwant\n%s", outputMetrics, outputMetricsExpected)
}
}
// Empty config
f(``, ``, ``, "")
f(``, `foo{bar="baz"} 1`, ``, "0")
f(``, "foo 1\nbaz 2", ``, "00")
// Empty by list - aggregate only by time
f(`
- interval: 1m
outputs: [count_samples, sum_samples, count_series, last]
`, `
foo{abc="123"} 4
bar 5 100
bar 34 10
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_count_samples 2
bar:1m_count_series 1
bar:1m_last 5
bar:1m_sum_samples 39
foo:1m_count_samples{abc="123"} 2
foo:1m_count_samples{abc="456",de="fg"} 1
foo:1m_count_series{abc="123"} 1
foo:1m_count_series{abc="456",de="fg"} 1
foo:1m_last{abc="123"} 8.5
foo:1m_last{abc="456",de="fg"} 8
foo:1m_sum_samples{abc="123"} 12.5
foo:1m_sum_samples{abc="456",de="fg"} 8
`, "11111")
// Special case: __name__ in `by` list - this is the same as empty `by` list
f(`
- interval: 1m
by: [__name__]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_count_samples 1
bar:1m_count_series 1
bar:1m_sum_samples 5
foo:1m_count_samples 3
foo:1m_count_series 2
foo:1m_sum_samples 20.5
`, "1111")
// Non-empty `by` list with non-existing labels
f(`
- interval: 1m
by: [foo, bar]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_by_bar_foo_count_samples 1
bar:1m_by_bar_foo_count_series 1
bar:1m_by_bar_foo_sum_samples 5
foo:1m_by_bar_foo_count_samples 3
foo:1m_by_bar_foo_count_series 2
foo:1m_by_bar_foo_sum_samples 20.5
`, "1111")
// Non-empty `by` list with existing label
f(`
- interval: 1m
by: [abc]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_by_abc_count_samples 1
bar:1m_by_abc_count_series 1
bar:1m_by_abc_sum_samples 5
foo:1m_by_abc_count_samples{abc="123"} 2
foo:1m_by_abc_count_samples{abc="456"} 1
foo:1m_by_abc_count_series{abc="123"} 1
foo:1m_by_abc_count_series{abc="456"} 1
foo:1m_by_abc_sum_samples{abc="123"} 12.5
foo:1m_by_abc_sum_samples{abc="456"} 8
`, "1111")
// Non-empty `by` list with duplicate existing label
f(`
- interval: 1m
by: [abc, abc]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_by_abc_count_samples 1
bar:1m_by_abc_count_series 1
bar:1m_by_abc_sum_samples 5
foo:1m_by_abc_count_samples{abc="123"} 2
foo:1m_by_abc_count_samples{abc="456"} 1
foo:1m_by_abc_count_series{abc="123"} 1
foo:1m_by_abc_count_series{abc="456"} 1
foo:1m_by_abc_sum_samples{abc="123"} 12.5
foo:1m_by_abc_sum_samples{abc="456"} 8
`, "1111")
// Non-empty `without` list with non-existing labels
f(`
- interval: 1m
without: [foo]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_without_foo_count_samples 1
bar:1m_without_foo_count_series 1
bar:1m_without_foo_sum_samples 5
foo:1m_without_foo_count_samples{abc="123"} 2
foo:1m_without_foo_count_samples{abc="456",de="fg"} 1
foo:1m_without_foo_count_series{abc="123"} 1
foo:1m_without_foo_count_series{abc="456",de="fg"} 1
foo:1m_without_foo_sum_samples{abc="123"} 12.5
foo:1m_without_foo_sum_samples{abc="456",de="fg"} 8
`, "1111")
// Non-empty `without` list with existing labels
f(`
- interval: 1m
without: [abc]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_without_abc_count_samples 1
bar:1m_without_abc_count_series 1
bar:1m_without_abc_sum_samples 5
foo:1m_without_abc_count_samples 2
foo:1m_without_abc_count_samples{de="fg"} 1
foo:1m_without_abc_count_series 1
foo:1m_without_abc_count_series{de="fg"} 1
foo:1m_without_abc_sum_samples 12.5
foo:1m_without_abc_sum_samples{de="fg"} 8
`, "1111")
// Special case: __name__ in `without` list
f(`
- interval: 1m
without: [__name__]
outputs: [count_samples, sum_samples, count_series]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `:1m_count_samples 1
:1m_count_samples{abc="123"} 2
:1m_count_samples{abc="456",de="fg"} 1
:1m_count_series 1
:1m_count_series{abc="123"} 1
:1m_count_series{abc="456",de="fg"} 1
:1m_sum_samples 5
:1m_sum_samples{abc="123"} 12.5
:1m_sum_samples{abc="456",de="fg"} 8
`, "1111")
// drop some input metrics
f(`
- interval: 1m
without: [abc]
outputs: [count_samples, sum_samples, count_series]
input_relabel_configs:
- if: 'foo'
action: drop
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_without_abc_count_samples 1
bar:1m_without_abc_count_series 1
bar:1m_without_abc_sum_samples 5
`, "1111")
// rename output metrics
f(`
- interval: 1m
without: [abc]
outputs: [count_samples, sum_samples, count_series]
output_relabel_configs:
- action: replace_all
source_labels: [__name__]
regex: ":|_"
replacement: "-"
target_label: __name__
- action: drop
source_labels: [de]
regex: fg
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar-1m-without-abc-count-samples 1
bar-1m-without-abc-count-series 1
bar-1m-without-abc-sum-samples 5
foo-1m-without-abc-count-samples 2
foo-1m-without-abc-count-series 1
foo-1m-without-abc-sum-samples 12.5
`, "1111")
// match doesn't match anything
f(`
- interval: 1m
without: [abc]
outputs: [count_samples, sum_samples, count_series]
match: '{non_existing_label!=""}'
name: foobar
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, ``, "0000")
// match matches foo series with non-empty abc label
f(`
- interval: 1m
by: [abc]
outputs: [count_samples, sum_samples, count_series]
name: abcdef
match:
- foo{abc=~".+"}
- '{non_existing_label!=""}'
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `foo:1m_by_abc_count_samples{abc="123"} 2
foo:1m_by_abc_count_samples{abc="456"} 1
foo:1m_by_abc_count_series{abc="123"} 1
foo:1m_by_abc_count_series{abc="456"} 1
foo:1m_by_abc_sum_samples{abc="123"} 12.5
foo:1m_by_abc_sum_samples{abc="456"} 8
`, "1011")
// total output for non-repeated series
f(`
- interval: 1m
outputs: [total]
`, `
foo 123
bar{baz="qwe"} 4.34
`, `bar:1m_total{baz="qwe"} 0
foo:1m_total 0
`, "11")
// total_prometheus output for non-repeated series
f(`
- interval: 1m
outputs: [total_prometheus]
`, `
foo 123
bar{baz="qwe"} 4.34
`, `bar:1m_total_prometheus{baz="qwe"} 0
foo:1m_total_prometheus 0
`, "11")
// total output for repeated series
f(`
- interval: 1m
outputs: [total]
`, `
foo 123
bar{baz="qwe"} 1.31
bar{baz="qwe"} 4.34 1000
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_total{baz="qwe"} 3.03
bar:1m_total{baz="qwer"} 1
foo:1m_total 0
foo:1m_total{baz="qwe"} 15
`, "11111111")
// total_prometheus output for repeated series
f(`
- interval: 1m
outputs: [total_prometheus]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_total_prometheus{baz="qwe"} 5.02
bar:1m_total_prometheus{baz="qwer"} 1
foo:1m_total_prometheus 0
foo:1m_total_prometheus{baz="qwe"} 15
`, "11111111")
// total output for repeated series with group by __name__
f(`
- interval: 1m
by: [__name__]
outputs: [total]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_total 6.02
foo:1m_total 15
`, "11111111")
// total_prometheus output for repeated series with group by __name__
f(`
- interval: 1m
by: [__name__]
outputs: [total_prometheus]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_total_prometheus 6.02
foo:1m_total_prometheus 15
`, "11111111")
// increase output for non-repeated series
f(`
- interval: 1m
outputs: [increase]
`, `
foo 123
bar{baz="qwe"} 4.34
`, `bar:1m_increase{baz="qwe"} 0
foo:1m_increase 0
`, "11")
// increase_prometheus output for non-repeated series
f(`
- interval: 1m
outputs: [increase_prometheus]
`, `
foo 123
bar{baz="qwe"} 4.34
`, `bar:1m_increase_prometheus{baz="qwe"} 0
foo:1m_increase_prometheus 0
`, "11")
// increase output for repeated series
f(`
- interval: 1m
outputs: [increase]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_increase{baz="qwe"} 5.02
bar:1m_increase{baz="qwer"} 1
foo:1m_increase 0
foo:1m_increase{baz="qwe"} 15
`, "11111111")
// increase_prometheus output for repeated series
f(`
- interval: 1m
outputs: [increase_prometheus]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_increase_prometheus{baz="qwe"} 5.02
bar:1m_increase_prometheus{baz="qwer"} 1
foo:1m_increase_prometheus 0
foo:1m_increase_prometheus{baz="qwe"} 15
`, "11111111")
// multiple aggregate configs
f(`
- interval: 1m
outputs: [count_series, sum_samples]
- interval: 5m
by: [bar]
outputs: [sum_samples]
`, `
foo 1
foo{bar="baz"} 2
foo 3.3
`, `foo:1m_count_series 1
foo:1m_count_series{bar="baz"} 1
foo:1m_sum_samples 4.3
foo:1m_sum_samples{bar="baz"} 2
foo:5m_by_bar_sum_samples 4.3
foo:5m_by_bar_sum_samples{bar="baz"} 2
`, "111")
// min and max outputs
f(`
- interval: 1m
outputs: [min, max]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_max 5
bar:1m_min 5
foo:1m_max{abc="123"} 8.5
foo:1m_max{abc="456",de="fg"} 8
foo:1m_min{abc="123"} 4
foo:1m_min{abc="456",de="fg"} 8
`, "1111")
// avg output
f(`
- interval: 1m
outputs: [avg]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_avg 5
foo:1m_avg{abc="123"} 6.25
foo:1m_avg{abc="456",de="fg"} 8
`, "1111")
// stddev output
f(`
- interval: 1m
outputs: [stddev]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_stddev 0
foo:1m_stddev{abc="123"} 2.25
foo:1m_stddev{abc="456",de="fg"} 0
`, "1111")
// stdvar output
f(`
- interval: 1m
outputs: [stdvar]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
foo{abc="456",de="fg"} 8
`, `bar:1m_stdvar 0
foo:1m_stdvar{abc="123"} 5.0625
foo:1m_stdvar{abc="456",de="fg"} 0
`, "1111")
// histogram_bucket output
f(`
- interval: 1m
outputs: [histogram_bucket]
`, `
cpu_usage{cpu="1"} 12.5
cpu_usage{cpu="1"} 13.3
cpu_usage{cpu="1"} 13
cpu_usage{cpu="1"} 12
cpu_usage{cpu="1"} 14
cpu_usage{cpu="1"} 25
cpu_usage{cpu="2"} 90
`, `cpu_usage:1m_histogram_bucket{cpu="1",vmrange="1.136e+01...1.292e+01"} 2
cpu_usage:1m_histogram_bucket{cpu="1",vmrange="1.292e+01...1.468e+01"} 3
cpu_usage:1m_histogram_bucket{cpu="1",vmrange="2.448e+01...2.783e+01"} 1
cpu_usage:1m_histogram_bucket{cpu="2",vmrange="8.799e+01...1.000e+02"} 1
`, "1111111")
// histogram_bucket output without cpu
f(`
- interval: 1m
without: [cpu]
outputs: [histogram_bucket]
`, `
cpu_usage{cpu="1"} 12.5
cpu_usage{cpu="1"} 13.3
cpu_usage{cpu="1"} 13
cpu_usage{cpu="1"} 12
cpu_usage{cpu="1"} 14
cpu_usage{cpu="1"} 25
cpu_usage{cpu="2"} 90
`, `cpu_usage:1m_without_cpu_histogram_bucket{vmrange="1.136e+01...1.292e+01"} 2
cpu_usage:1m_without_cpu_histogram_bucket{vmrange="1.292e+01...1.468e+01"} 3
cpu_usage:1m_without_cpu_histogram_bucket{vmrange="2.448e+01...2.783e+01"} 1
cpu_usage:1m_without_cpu_histogram_bucket{vmrange="8.799e+01...1.000e+02"} 1
`, "1111111")
// quantiles output
f(`
- interval: 1m
outputs: ["quantiles(0, 0.5, 1)"]
`, `
cpu_usage{cpu="1"} 12.5
cpu_usage{cpu="1"} 13.3
cpu_usage{cpu="1"} 13
cpu_usage{cpu="1"} 12
cpu_usage{cpu="1"} 14
cpu_usage{cpu="1"} 25
cpu_usage{cpu="2"} 90
`, `cpu_usage:1m_quantiles{cpu="1",quantile="0"} 12
cpu_usage:1m_quantiles{cpu="1",quantile="0.5"} 13.3
cpu_usage:1m_quantiles{cpu="1",quantile="1"} 25
cpu_usage:1m_quantiles{cpu="2",quantile="0"} 90
cpu_usage:1m_quantiles{cpu="2",quantile="0.5"} 90
cpu_usage:1m_quantiles{cpu="2",quantile="1"} 90
`, "1111111")
// quantiles output without cpu
f(`
- interval: 1m
without: [cpu]
outputs: ["quantiles(0, 0.5, 1)"]
`, `
cpu_usage{cpu="1"} 12.5
cpu_usage{cpu="1"} 13.3
cpu_usage{cpu="1"} 13
cpu_usage{cpu="1"} 12
cpu_usage{cpu="1"} 14
cpu_usage{cpu="1"} 25
cpu_usage{cpu="2"} 90
`, `cpu_usage:1m_without_cpu_quantiles{quantile="0"} 12
cpu_usage:1m_without_cpu_quantiles{quantile="0.5"} 13.3
cpu_usage:1m_without_cpu_quantiles{quantile="1"} 90
`, "1111111")
// append additional label
f(`
- interval: 1m
without: [abc]
outputs: [count_samples, sum_samples, count_series]
output_relabel_configs:
- action: replace_all
source_labels: [__name__]
regex: ":|_"
replacement: "-"
target_label: __name__
- action: drop
source_labels: [de]
regex: fg
- target_label: new_label
replacement: must_keep_metric_name
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5 10
foo{abc="456",de="fg"} 8
`, `bar-1m-without-abc-count-samples{new_label="must_keep_metric_name"} 1
bar-1m-without-abc-count-series{new_label="must_keep_metric_name"} 1
bar-1m-without-abc-sum-samples{new_label="must_keep_metric_name"} 5
foo-1m-without-abc-count-samples{new_label="must_keep_metric_name"} 2
foo-1m-without-abc-count-series{new_label="must_keep_metric_name"} 1
foo-1m-without-abc-sum-samples{new_label="must_keep_metric_name"} 12.5
`, "1111")
// test rate_sum and rate_avg
f(`
- interval: 1m
by: [cde]
outputs: [rate_sum, rate_avg]
`, `
foo{abc="123", cde="1"} 4
foo{abc="123", cde="1"} 8.5 10
foo{abc="456", cde="1"} 8
foo{abc="456", cde="1"} 10 10
foo 12 34
`, `foo:1m_by_cde_rate_avg{cde="1"} 0.325
foo:1m_by_cde_rate_sum{cde="1"} 0.65
`, "11111")
// rate_sum and rate_avg with duplicated events
f(`
- interval: 1m
outputs: [rate_sum, rate_avg]
`, `
foo{abc="123", cde="1"} 4 10
foo{abc="123", cde="1"} 4 10
`, ``, "11")
// rate_sum and rate_avg for a single sample
f(`
- interval: 1m
outputs: [rate_sum, rate_avg]
`, `
foo 4 10
bar 5 10
`, ``, "11")
// unique_samples output
f(`
- interval: 1m
outputs: [unique_samples]
`, `
foo 1 10
foo 2 20
foo 1 10
foo 2 20
foo 3 20
`, `foo:1m_unique_samples 3
`, "11111")
// keep_metric_names
f(`
- interval: 1m
keep_metric_names: true
outputs: [count_samples]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
bar -34.3
foo{abc="456",de="fg"} 8
`, `bar 2
foo{abc="123"} 2
foo{abc="456",de="fg"} 1
`, "11111")
// drop_input_labels
f(`
- interval: 1m
drop_input_labels: [abc]
keep_metric_names: true
outputs: [count_samples]
`, `
foo{abc="123"} 4
bar 5
foo{abc="123"} 8.5
bar -34.3
foo{abc="456",de="fg"} 8
`, `bar 2
foo 2
foo{de="fg"} 1
`, "11111")
}
func TestAggregatorsWithDedupInterval(t *testing.T) {
f := func(config, inputMetrics, outputMetricsExpected, matchIdxsStrExpected string) {
t.Helper()
// Initialize Aggregators
var tssOutput []prompbmarshal.TimeSeries
var tssOutputLock sync.Mutex
pushFunc := func(tss []prompbmarshal.TimeSeries) {
tssOutputLock.Lock()
for _, ts := range tss {
labelsCopy := append([]prompbmarshal.Label{}, ts.Labels...)
samplesCopy := append([]prompbmarshal.Sample{}, ts.Samples...)
tssOutput = append(tssOutput, prompbmarshal.TimeSeries{
Labels: labelsCopy,
Samples: samplesCopy,
})
}
tssOutputLock.Unlock()
}
opts := &Options{
DedupInterval: 30 * time.Second,
FlushOnShutdown: true,
}
a, err := LoadFromData([]byte(config), pushFunc, opts, "some_alias")
if err != nil {
t.Fatalf("cannot initialize aggregators: %s", err)
}
// Push the inputMetrics to Aggregators
offsetMsecs := time.Now().UnixMilli()
tssInput := prompbmarshal.MustParsePromMetrics(inputMetrics, offsetMsecs)
matchIdxs := a.Push(tssInput, nil)
a.MustStop()
// Verify matchIdxs equals to matchIdxsExpected
matchIdxsStr := ""
for _, v := range matchIdxs {
matchIdxsStr += strconv.Itoa(int(v))
}
if matchIdxsStr != matchIdxsStrExpected {
t.Fatalf("unexpected matchIdxs;\ngot\n%s\nwant\n%s", matchIdxsStr, matchIdxsStrExpected)
}
// Verify the tssOutput contains the expected metrics
tsStrings := make([]string, len(tssOutput))
for i, ts := range tssOutput {
tsStrings[i] = timeSeriesToString(ts)
}
sort.Strings(tsStrings)
outputMetrics := strings.Join(tsStrings, "")
if outputMetrics != outputMetricsExpected {
t.Fatalf("unexpected output metrics;\ngot\n%s\nwant\n%s", outputMetrics, outputMetricsExpected)
}
}
f(`
- interval: 1m
outputs: [sum_samples]
`, `
foo 123
bar 567
`, `bar:1m_sum_samples 567
foo:1m_sum_samples 123
`, "11")
f(`
- interval: 1m
outputs: [sum_samples]
`, `
foo 123
bar{baz="qwe"} 1.32
bar{baz="qwe"} 4.34
bar{baz="qwe"} 2
foo{baz="qwe"} -5
bar{baz="qwer"} 343
bar{baz="qwer"} 344
foo{baz="qwe"} 10
`, `bar:1m_sum_samples{baz="qwe"} 4.34
bar:1m_sum_samples{baz="qwer"} 344
foo:1m_sum_samples 123
foo:1m_sum_samples{baz="qwe"} 10
`, "11111111")
}
func timeSeriessToString(tss []prompbmarshal.TimeSeries) string {
a := make([]string, len(tss))
for i, ts := range tss {
a[i] = timeSeriesToString(ts)
}
sort.Strings(a)
return strings.Join(a, "")
}
func timeSeriesToString(ts prompbmarshal.TimeSeries) string {
labelsString := promrelabel.LabelsToString(ts.Labels)
if len(ts.Samples) != 1 {
panic(fmt.Errorf("unexpected number of samples for %s: %d; want 1", labelsString, len(ts.Samples)))
}
return fmt.Sprintf("%s %v\n", labelsString, ts.Samples[0].Value)
}
func appendClonedTimeseries(dst, src []prompbmarshal.TimeSeries) []prompbmarshal.TimeSeries {
for _, ts := range src {
dst = append(dst, prompbmarshal.TimeSeries{
Labels: append(ts.Labels[:0:0], ts.Labels...),
Samples: append(ts.Samples[:0:0], ts.Samples...),
})
}
return dst
}