blah2/test/unit/process/ambiguity/TestAmbiguity.cpp

192 lines
5.7 KiB
C++
Raw Normal View History

/// @file TestAmbiguity.cpp
/// @brief Unit test for Ambiguity.cpp
/// @author 30hours
/// @author Dan G
/// @todo Add golden data IqData file for testing.
/// @todo Declaration match to coding style?
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/generators/catch_generators.hpp>
#include "process/ambiguity/Ambiguity.h"
#include <random>
#include <iostream>
#include <filesystem>
/// @brief Use random_device as RNG.
std::random_device g_rd;
/// @brief Generate random IQ data.
/// @param iqData Address of IqData object.
/// @details Have to use out ref parameter because there's no copy/move ctors.
/// @return Void.
void random_iq(IqData& iq_data) {
std::mt19937 gen(g_rd());
std::uniform_real_distribution<> dist(-100.0, 100.0);
for (uint32_t i = 0; i < iq_data.get_n(); ++i) {
iq_data.push_back({dist(gen), dist(gen)});
}
}
/// @brief Read file to IqData buffer.
/// @param buffer1 IqData buffer reference.
/// @param buffer2 IqData buffer surveillance.
/// @param file String of file name.
/// @return Void.
void read_file(IqData& buffer1, IqData& buffer2, const std::string& file)
{
short i1, q1, i2, q2;
auto file_replay = fopen(file.c_str(), "rb");
if (!file_replay) {
return;
}
auto read_short = [](short& v, FILE* fid) {
auto rv{fread(&v, 1, sizeof(short), fid)};
return rv == sizeof(short);
};
while (!feof(file_replay))
{
if (!read_short(i1, file_replay)) break;
if (!read_short(q1, file_replay)) break;
if (!read_short(i2, file_replay)) break;
if (!read_short(q2, file_replay)) break;
buffer1.push_back({(double)i1, (double)q1});
buffer2.push_back({(double)i2, (double)q2});
// only read for the buffer length - this class is very poorly designed
if (buffer1.get_length() == buffer1.get_n()) {
break;
}
}
fclose(file_replay);
}
/// @brief Test constructor.
/// @details Check constructor parameters created correctly.
TEST_CASE("Constructor", "[constructor]")
{
int32_t delayMin{-10};
int32_t delayMax{300};
int32_t dopplerMin{-300};
int32_t dopplerMax{300};
uint32_t fs{2'000'000};
float tCpi{0.5};
uint32_t nSamples = tCpi * fs; // narrow on purpose
Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples);
CHECK_THAT(ambiguity.cpi_length_seconds(), Catch::Matchers::WithinAbs(tCpi, 0.02));
CHECK(ambiguity.doppler_middle() == 0);
CHECK(ambiguity.corr_samples_per_pulse() == 3322);
CHECK(ambiguity.delay_bin_count() == delayMax + std::abs(delayMin) + 1);
CHECK(ambiguity.doppler_bin_count() == 301);
CHECK(ambiguity.fft_bin_count() == 6643);
}
/// @brief Test constructor with rounded Hamming number FFT length.
TEST_CASE("Constructor_Round", "[constructor]")
{
int32_t delayMin{-10};
int32_t delayMax{300};
int32_t dopplerMin{-300};
int32_t dopplerMax{300};
uint32_t fs{2'000'000};
float tCpi{0.5};
uint32_t nSamples = tCpi * fs; // narrow on purpose
Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples, true);
CHECK_THAT(ambiguity.cpi_length_seconds(), Catch::Matchers::WithinAbs(tCpi, 0.02));
CHECK(ambiguity.doppler_middle() == 0);
CHECK(ambiguity.corr_samples_per_pulse() == 3322);
CHECK(ambiguity.delay_bin_count() == delayMax + std::abs(delayMin) + 1);
CHECK(ambiguity.doppler_bin_count() == 301);
CHECK(ambiguity.fft_bin_count() == 6750);
}
/// @brief Test simple ambiguity processing.
TEST_CASE("Process_Simple", "[process]")
{
auto round_hamming = GENERATE(true, false);
int32_t delayMin{-10};
int32_t delayMax{300};
int32_t dopplerMin{-300};
int32_t dopplerMax{300};
uint32_t fs{2'000'000};
float tCpi{0.5};
uint32_t nSamples = tCpi * fs; // narrow on purpose
Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples, round_hamming);
IqData x{nSamples};
IqData y{nSamples};
random_iq(x);
random_iq(y);
auto map{ambiguity.process(&x, &y)};
map->set_metrics();
CHECK(map->maxPower > 0.0);
CHECK(map->noisePower > 0.0);
std::cout << "Process_Simple with" << (round_hamming ? " hamming\n" : "out hamming\n")
<< ambiguity.get_latest_performance() << "\n-----------" << std::endl;
}
/// @brief Test processing from a file.
TEST_CASE("Process_File", "[process]")
{
std::filesystem::path test_input_file("20231214-230611.rspduo");
// Bail if the test file doesn't exist
if (!std::filesystem::exists(test_input_file)) {
SKIP("Input test file does not exist.");
}
auto round_hamming = GENERATE(true, false);
int32_t delayMin{-10};
int32_t delayMax{300};
int32_t dopplerMin{-300};
int32_t dopplerMax{300};
uint32_t fs{2'000'000};
float tCpi{0.5};
uint32_t nSamples = tCpi * fs; // narrow on purpose
Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples, round_hamming);
IqData x{nSamples};
IqData y{nSamples};
read_file(x, y, "20231214-230611.rspduo");
REQUIRE(x.get_length() == x.get_n());
auto map{ambiguity.process(&x ,&y)};
map->set_metrics();
CHECK_THAT(map->maxPower, Catch::Matchers::WithinAbs(30.2816, 0.001));
CHECK_THAT(map->noisePower, Catch::Matchers::WithinAbs(76.918, 0.001));
std::cout << "Process_File with" << (round_hamming ? " hamming\n" : "out hamming\n")
<< ambiguity.get_latest_performance() << "\n-----------" << std::endl;
}
/// @brief Test Hamming number calculation.
TEST_CASE("Next_Hamming", "[hamming]")
{
CHECK(next_hamming(104) == 108);
CHECK(next_hamming(3322) == 3375);
CHECK(next_hamming(19043) == 19200);
}