Amend code style in Ambiguity and refactor ambiguity tests

This commit is contained in:
30hours 2024-05-04 02:41:33 +00:00
parent 9d0eb44418
commit 7447edc62b
10 changed files with 236 additions and 204 deletions

View file

@ -18,13 +18,12 @@ find_package(Catch2 CONFIG REQUIRED)
set(CMAKE_PREFIX_PATH "/opt/uhd" ${CMAKE_PREFIX_PATH}) set(CMAKE_PREFIX_PATH "/opt/uhd" ${CMAKE_PREFIX_PATH})
find_package(UHD "4.6.0.0" CONFIG REQUIRED) find_package(UHD "4.6.0.0" CONFIG REQUIRED)
# TODO: when release CI is finished, don't use these dirs, install target should go to prod
SET (PROJECT_ROOT "${PROJECT_SOURCE_DIR}") SET (PROJECT_ROOT "${PROJECT_SOURCE_DIR}")
SET (CMAKE_RUNTIME_OUTPUT_DIRECTORY "${PROJECT_ROOT}/bin") SET (CMAKE_RUNTIME_OUTPUT_DIRECTORY "${PROJECT_ROOT}/bin")
SET (PROJECT_BINARY_TEST_DIR "${PROJECT_ROOT}/bin/test") SET (PROJECT_BINARY_TEST_DIR "${PROJECT_ROOT}/bin/test")
SET (PROJECT_BINARY_TEST_UNIT_DIR "${PROJECT_BINARY_TEST_DIR}/unit") SET (PROJECT_BINARY_TEST_UNIT_DIR "${PROJECT_BINARY_TEST_DIR}/unit")
SET (PROJECT_BINARY_TEST_UNIT_DIR "${PROJECT_BINARY_TEST_DIR}/functional") SET (PROJECT_BINARY_TEST_FUNCTIONAL_DIR "${PROJECT_BINARY_TEST_DIR}/functional")
SET (PROJECT_BINARY_TEST_UNIT_DIR "${PROJECT_BINARY_TEST_DIR}/comparison") SET (PROJECT_BINARY_TEST_COMPARISON_DIR "${PROJECT_BINARY_TEST_DIR}/comparison")
MESSAGE ("Binary path: ${PROJECT_BINARY_DIR}") MESSAGE ("Binary path: ${PROJECT_BINARY_DIR}")
MESSAGE ("Binary test path: ${PROJECT_BINARY_TEST_DIR}") MESSAGE ("Binary test path: ${PROJECT_BINARY_TEST_DIR}")
@ -37,6 +36,7 @@ add_library(sdrplay /usr/local/include/sdrplay_api.h)
set_target_properties(sdrplay PROPERTIES LINKER_LANGUAGE C) set_target_properties(sdrplay PROPERTIES LINKER_LANGUAGE C)
target_link_libraries(sdrplay PUBLIC /usr/local/lib/libsdrplay_api.so.3.14) target_link_libraries(sdrplay PUBLIC /usr/local/lib/libsdrplay_api.so.3.14)
# TODO: Move to separate src/CMakeLists.txt
add_executable(blah2 add_executable(blah2
src/blah2.cpp src/blah2.cpp
src/capture/Capture.cpp src/capture/Capture.cpp
@ -80,8 +80,13 @@ add_executable(testAmbiguity
src/data/IqData.cpp src/data/IqData.cpp
src/data/Map.cpp src/data/Map.cpp
src/process/ambiguity/Ambiguity.cpp src/process/ambiguity/Ambiguity.cpp
src/process/meta/HammingNumber.cpp) src/process/meta/HammingNumber.cpp
target_link_libraries(testAmbiguity PRIVATE Catch2::Catch2WithMain fftw3 fftw3_threads) )
target_link_libraries(testAmbiguity PRIVATE
Catch2::Catch2WithMain
fftw3
fftw3_threads
)
set_target_properties(testAmbiguity PROPERTIES set_target_properties(testAmbiguity PROPERTIES
RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_TEST_UNIT_DIR}") RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_TEST_UNIT_DIR}")
@ -89,10 +94,24 @@ add_executable(testTracker
test/unit/process/tracker/TestTracker.cpp test/unit/process/tracker/TestTracker.cpp
src/data/Detection.cpp src/data/Detection.cpp
src/data/Track.cpp src/data/Track.cpp
src/process/tracker/Tracker.cpp) src/process/tracker/Tracker.cpp
target_link_libraries(testTracker PRIVATE Catch2::Catch2WithMain) )
target_link_libraries(testTracker PRIVATE
Catch2::Catch2WithMain
)
set_target_properties(testTracker PROPERTIES set_target_properties(testTracker PROPERTIES
RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_TEST_UNIT_DIR}") RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_TEST_UNIT_DIR}")
add_executable(testHammingNumber
test/unit/process/meta/TestHammingNumber.cpp
src/process/meta/HammingNumber.cpp
)
target_link_libraries(testHammingNumber PRIVATE
Catch2::Catch2WithMain
)
set_target_properties(testHammingNumber PROPERTIES
RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_TEST_UNIT_DIR}")
# TODO: Unsure if will be using CTest.
add_test(NAME testAmbiguity COMMAND testAmbiguity) add_test(NAME testAmbiguity COMMAND testAmbiguity)
add_test(NAME testTracker COMMAND testTracker) add_test(NAME testTracker COMMAND testTracker)

View file

@ -178,7 +178,7 @@ int main(int argc, char **argv)
tree["process"]["tracker"]["initiate"]["maxAcc"] >> maxAcc; tree["process"]["tracker"]["initiate"]["maxAcc"] >> maxAcc;
rangeRes = (double)Constants::c/fs; rangeRes = (double)Constants::c/fs;
lambda = (double)Constants::c/fc; lambda = (double)Constants::c/fc;
Tracker *tracker = new Tracker(m, n, nDelete, ambiguity->cpi_length_seconds(), maxAcc, rangeRes, lambda); Tracker *tracker = new Tracker(m, n, nDelete, ambiguity->get_cpi(), maxAcc, rangeRes, lambda);
// setup process spectrum analyser // setup process spectrum analyser
double spectrumBandwidth = 2000; double spectrumBandwidth = 2000;

View file

@ -8,183 +8,184 @@
#include <chrono> #include <chrono>
// constructor // constructor
Ambiguity::Ambiguity(int32_t delayMin, int32_t delayMax, int32_t dopplerMin, int32_t dopplerMax, uint32_t fs, uint32_t n, bool roundHamming) Ambiguity::Ambiguity(int32_t _delayMin, int32_t _delayMax, int32_t _dopplerMin, int32_t _dopplerMax, uint32_t _fs, uint32_t _n, bool _roundHamming)
: delayMin_{delayMin} : delayMin{_delayMin}
, delayMax_{delayMax} , delayMax{_delayMax}
, dopplerMin_{dopplerMin} , dopplerMin{_dopplerMin}
, dopplerMax_{dopplerMax} , dopplerMax{_dopplerMax}
, fs_{fs} , fs{_fs}
, nSamples_{n} , nSamples{_n}
, nDelayBins_{static_cast<uint16_t>(delayMax - delayMin + 1)} // If delayMin > delayMax = trouble, what's the exception policy? , nDelayBins{static_cast<uint16_t>(_delayMax - _delayMin + 1)} // If delayMin > delayMax = trouble, what's the exception policy?
, dopplerMiddle_{(dopplerMin_ + dopplerMax_) / 2.0} , dopplerMiddle{(_dopplerMin + _dopplerMax) / 2.0}
{ {
// doppler calculations // doppler calculations
std::deque<double> doppler; std::deque<double> doppler;
double resolutionDoppler = 1.0 / (static_cast<double>(n) / static_cast<double>(fs)); double resolutionDoppler = 1.0 / (static_cast<double>(_n) / static_cast<double>(_fs));
doppler.push_back(dopplerMiddle_); doppler.push_back(dopplerMiddle);
int i = 1; int i = 1;
while (dopplerMiddle_ + (i * resolutionDoppler) <= dopplerMax) while (dopplerMiddle + (i * resolutionDoppler) <= dopplerMax)
{ {
doppler.push_back(dopplerMiddle_ + (i * resolutionDoppler)); doppler.push_back(dopplerMiddle + (i * resolutionDoppler));
doppler.push_front(dopplerMiddle_ - (i * resolutionDoppler)); doppler.push_front(dopplerMiddle - (i * resolutionDoppler));
i++; i++;
} }
nDopplerBins_ = doppler.size(); nDopplerBins = doppler.size();
// batches constants // batches constants
nCorr_ = n / nDopplerBins_; nCorr = _n / nDopplerBins;
cpi_ = (static_cast<double>(nCorr_) * nDopplerBins_) / fs; cpi = (static_cast<double>(nCorr) * nDopplerBins) / fs;
// update doppler bins to true cpi time // update doppler bins to true cpi time
resolutionDoppler = 1.0 / cpi_; resolutionDoppler = 1.0 / cpi;
// create ambiguity map // create ambiguity map
map_ = std::make_unique<Map<Complex>>(nDopplerBins_, nDelayBins_); map = std::make_unique<Map<Complex>>(nDopplerBins, nDelayBins);
// delay calculations // delay calculations
map_->delay.resize(nDelayBins_); map->delay.resize(nDelayBins);
std::iota(map_->delay.begin(), map_->delay.end(), delayMin_); std::iota(map->delay.begin(), map->delay.end(), delayMin);
map_->doppler.push_front(dopplerMiddle_); map->doppler.push_front(dopplerMiddle);
i = 1; i = 1;
while (map_->doppler.size() < nDopplerBins_) while (map->doppler.size() < nDopplerBins)
{ {
map_->doppler.push_back(dopplerMiddle_ + (i * resolutionDoppler)); map->doppler.push_back(dopplerMiddle + (i * resolutionDoppler));
map_->doppler.push_front(dopplerMiddle_ - (i * resolutionDoppler)); map->doppler.push_front(dopplerMiddle - (i * resolutionDoppler));
i++; i++;
} }
// other setup // other setup
nfft_ = 2 * nCorr_ - 1; nfft = 2 * nCorr - 1;
if (roundHamming) { if (_roundHamming) {
nfft_ = next_hamming(nfft_); nfft = next_hamming(nfft);
} }
dataCorr_.resize(2 * nDelayBins_ + 1); dataCorr.resize(2 * nDelayBins + 1);
// compute FFTW plans in constructor // compute FFTW plans in constructor
dataXi_.resize(nfft_); dataXi.resize(nfft);
dataYi_.resize(nfft_); dataYi.resize(nfft);
dataZi_.resize(nfft_); dataZi.resize(nfft);
dataDoppler_.resize(nfft_); dataDoppler.resize(nfft);
fftXi_ = fftw_plan_dft_1d(nfft_, reinterpret_cast<fftw_complex *>(dataXi_.data()), fftXi = fftw_plan_dft_1d(nfft, reinterpret_cast<fftw_complex *>(dataXi.data()),
reinterpret_cast<fftw_complex *>(dataXi_.data()), FFTW_FORWARD, FFTW_ESTIMATE); reinterpret_cast<fftw_complex *>(dataXi.data()), FFTW_FORWARD, FFTW_ESTIMATE);
fftYi_ = fftw_plan_dft_1d(nfft_, reinterpret_cast<fftw_complex *>(dataYi_.data()), fftYi = fftw_plan_dft_1d(nfft, reinterpret_cast<fftw_complex *>(dataYi.data()),
reinterpret_cast<fftw_complex *>(dataYi_.data()), FFTW_FORWARD, FFTW_ESTIMATE); reinterpret_cast<fftw_complex *>(dataYi.data()), FFTW_FORWARD, FFTW_ESTIMATE);
fftZi_ = fftw_plan_dft_1d(nfft_, reinterpret_cast<fftw_complex *>(dataZi_.data()), fftZi = fftw_plan_dft_1d(nfft, reinterpret_cast<fftw_complex *>(dataZi.data()),
reinterpret_cast<fftw_complex *>(dataZi_.data()), FFTW_BACKWARD, FFTW_ESTIMATE); reinterpret_cast<fftw_complex *>(dataZi.data()), FFTW_BACKWARD, FFTW_ESTIMATE);
fftDoppler_ = fftw_plan_dft_1d(nDopplerBins_, reinterpret_cast<fftw_complex *>(dataDoppler_.data()), fftDoppler = fftw_plan_dft_1d(nDopplerBins, reinterpret_cast<fftw_complex *>(dataDoppler.data()),
reinterpret_cast<fftw_complex *>(dataDoppler_.data()), FFTW_FORWARD, FFTW_ESTIMATE); reinterpret_cast<fftw_complex *>(dataDoppler.data()), FFTW_FORWARD, FFTW_ESTIMATE);
} }
Ambiguity::~Ambiguity() Ambiguity::~Ambiguity()
{ {
fftw_destroy_plan(fftXi_); fftw_destroy_plan(fftXi);
fftw_destroy_plan(fftYi_); fftw_destroy_plan(fftYi);
fftw_destroy_plan(fftZi_); fftw_destroy_plan(fftZi);
fftw_destroy_plan(fftDoppler_); fftw_destroy_plan(fftDoppler);
} }
Map<std::complex<double>> *Ambiguity::process(IqData *x, IqData *y) Map<std::complex<double>> *Ambiguity::process(IqData *x, IqData *y)
{ {
using Timer = std::chrono::steady_clock;
auto t0{Timer::now()};
Timer::duration range_fft_dur{};
// shift reference if not 0 centered // shift reference if not 0 centered
if (dopplerMiddle_ != 0) if (dopplerMiddle != 0)
{ {
std::complex<double> j = {0, 1}; std::complex<double> j = {0, 1};
for (int i = 0; i < x->get_length(); i++) for (int i = 0; i < x->get_length(); i++)
{ {
x->push_back(x->pop_front() * std::exp(1.0 * j * 2.0 * M_PI * dopplerMiddle_ * ((double)i / fs_))); x->push_back(x->pop_front() * std::exp(1.0 * j * 2.0 * M_PI * dopplerMiddle * ((double)i / fs)));
} }
} }
// range processing // range processing
for (int i = 0; i < nDopplerBins_; i++) for (int i = 0; i < nDopplerBins; i++)
{ {
for (int j = 0; j < nCorr_; j++) for (int j = 0; j < nCorr; j++)
{ {
dataXi_[j] = x->pop_front(); dataXi[j] = x->pop_front();
dataYi_[j] = y->pop_front(); dataYi[j] = y->pop_front();
} }
for (int j = nCorr_; j < nfft_; j++) for (int j = nCorr; j < nfft; j++)
{ {
dataXi_[j] = {0, 0}; dataXi[j] = {0, 0};
dataYi_[j] = {0, 0}; dataYi[j] = {0, 0};
} }
auto t1{Timer::now()}; fftw_execute(fftXi);
fftw_execute(fftXi_); fftw_execute(fftYi);
fftw_execute(fftYi_);
range_fft_dur += Timer::now() - t1;
// compute correlation // compute correlation
for (int j = 0; j < nfft_; j++) for (int j = 0; j < nfft; j++)
{ {
dataZi_[j] = (dataYi_[j] * std::conj(dataXi_[j])) / (double)nfft_; dataZi[j] = (dataYi[j] * std::conj(dataXi[j])) / (double)nfft;
} }
t1 = Timer::now(); fftw_execute(fftZi);
fftw_execute(fftZi_);
range_fft_dur += Timer::now() - t1;
// extract center of corr // extract center of corr
for (int j = 0; j < nDelayBins_; j++) for (int j = 0; j < nDelayBins; j++)
{ {
dataCorr_[j] = dataZi_[nfft_ - nDelayBins_ + j]; dataCorr[j] = dataZi[nfft - nDelayBins + j];
} }
for (int j = 0; j < nDelayBins_ + 1; j++) for (int j = 0; j < nDelayBins + 1; j++)
{ {
dataCorr_[j + nDelayBins_] = dataZi_[j]; dataCorr[j + nDelayBins] = dataZi[j];
} }
// cast from std::complex to std::vector // cast from std::complex to std::vector
corr_.clear(); corr.clear();
for (int j = 0; j < nDelayBins_; j++) for (int j = 0; j < nDelayBins; j++)
{ {
corr_.push_back(dataCorr_[nDelayBins_ + delayMin_ + j - 1 + 1]); corr.push_back(dataCorr[nDelayBins + delayMin + j - 1 + 1]);
} }
map_->set_row(i, corr_); map->set_row(i, corr);
} }
// doppler processing // doppler processing
auto t1{Timer::now()}; for (int i = 0; i < nDelayBins; i++)
for (int i = 0; i < nDelayBins_; i++)
{ {
delayProfile_ = map_->get_col(i); delayProfile = map->get_col(i);
for (int j = 0; j < nDopplerBins_; j++) for (int j = 0; j < nDopplerBins; j++)
{ {
dataDoppler_[j] = {delayProfile_[j].real(), delayProfile_[j].imag()}; dataDoppler[j] = {delayProfile[j].real(), delayProfile[j].imag()};
} }
fftw_execute(fftDoppler_); fftw_execute(fftDoppler);
corr_.clear(); corr.clear();
for (int j = 0; j < nDopplerBins_; j++) for (int j = 0; j < nDopplerBins; j++)
{ {
corr_.push_back(dataDoppler_[(j + int(nDopplerBins_ / 2) + 1) % nDopplerBins_]); corr.push_back(dataDoppler[(j + int(nDopplerBins / 2) + 1) % nDopplerBins]);
} }
map_->set_col(i, corr_); map->set_col(i, corr);
} }
auto to_ms = [] (const Timer::duration& dur) { return map.get();
return std::chrono::duration_cast<std::chrono::duration<double, std::milli>>(dur).count();
};
latest_performance_.process_time_ms = to_ms(Timer::now() - t0);
latest_performance_.doppler_fft_time_ms = to_ms(Timer::now() - t1);
latest_performance_.range_fft_time_ms = to_ms(range_fft_dur);
return map_.get();
} }
std::ostream& operator<<(std::ostream& str, const Ambiguity::PerformanceStats& stats) { double Ambiguity::get_doppler_middle() const {
return str << "Total time: " << stats.process_time_ms << "ms\n" << return dopplerMiddle;
"Range FFT time: " << stats.range_fft_time_ms << "ms\n" << }
"Doppler FFT time: " << stats.doppler_fft_time_ms << "ms";
} uint16_t Ambiguity::get_n_delay_bins() const {
return nDelayBins;
}
uint16_t Ambiguity::get_n_doppler_bins() const {
return nDopplerBins;
}
uint16_t Ambiguity::get_n_corr() const {
return nCorr;
}
double Ambiguity::get_cpi() const {
return cpi;
}
uint32_t Ambiguity::get_nfft() const {
return nfft;
}

View file

@ -5,8 +5,7 @@
/// See Fundamentals of Radar Signal Processing (Richards) for more on the pulse-Doppler processing method. /// See Fundamentals of Radar Signal Processing (Richards) for more on the pulse-Doppler processing method.
/// @author 30hours /// @author 30hours
/// @todo Ambiguity maps are still offset by 1 bin. /// @todo Ambiguity maps are still offset by 1 bin.
/// @todo Write a performance test for hamming assisted ambiguity processing.
#pragma once
#include "data/IqData.h" #include "data/IqData.h"
#include "data/Map.h" #include "data/Map.h"
@ -22,13 +21,6 @@ public:
using Complex = std::complex<double>; using Complex = std::complex<double>;
struct PerformanceStats {
double process_time_ms{0};
double range_fft_time_ms{0};
double doppler_fft_time_ms{0};
};
/// @brief Constructor. /// @brief Constructor.
/// @param delayMin Minimum delay (bins). /// @param delayMin Minimum delay (bins).
/// @param delayMax Maximum delay (bins). /// @param delayMax Maximum delay (bins).
@ -36,7 +28,7 @@ public:
/// @param dopplerMax Maximum Doppler (Hz). /// @param dopplerMax Maximum Doppler (Hz).
/// @param fs Sampling frequency (Hz). /// @param fs Sampling frequency (Hz).
/// @param n Number of samples. /// @param n Number of samples.
/// @param roundHamming Round the correlation FFT length to a Hamming number for performance /// @param roundHamming Round the correlation FFT length to a Hamming number for performance.
/// @return The object. /// @return The object.
Ambiguity(int32_t delayMin, int32_t delayMax, int32_t dopplerMin, int32_t dopplerMax, uint32_t fs, uint32_t n, bool roundHamming = false); Ambiguity(int32_t delayMin, int32_t delayMax, int32_t dopplerMin, int32_t dopplerMax, uint32_t fs, uint32_t n, bool roundHamming = false);
@ -50,81 +42,77 @@ public:
/// @return Ambiguity map data of IQ samples. /// @return Ambiguity map data of IQ samples.
Map<Complex> *process(IqData *x, IqData *y); Map<Complex> *process(IqData *x, IqData *y);
double doppler_middle() const { return dopplerMiddle_; } double get_doppler_middle() const;
uint16_t delay_bin_count() const { return nDelayBins_; } uint16_t get_n_delay_bins() const;
uint16_t doppler_bin_count() const { return nDopplerBins_; } uint16_t get_n_doppler_bins() const;
uint16_t corr_samples_per_pulse() const { return nCorr_; } uint16_t get_n_corr() const;
double cpi_length_seconds() const { return cpi_; } double get_cpi() const;
uint32_t fft_bin_count() const { return nfft_; } uint32_t get_nfft() const;
PerformanceStats get_latest_performance() const { return latest_performance_; }
private: private:
/// @brief Minimum delay (bins). /// @brief Minimum delay (bins).
int32_t delayMin_; int32_t delayMin;
/// @brief Maximum delay (bins). /// @brief Maximum delay (bins).
int32_t delayMax_; int32_t delayMax;
/// @brief Minimum Doppler (Hz). /// @brief Minimum Doppler (Hz).
int32_t dopplerMin_; int32_t dopplerMin;
/// @brief Maximum Doppler (Hz). /// @brief Maximum Doppler (Hz).
int32_t dopplerMax_; int32_t dopplerMax;
/// @brief Sampling frequency (Hz). /// @brief Sampling frequency (Hz).
uint32_t fs_; uint32_t fs;
/// @brief Number of samples. /// @brief Number of samples.
uint32_t nSamples_; uint32_t nSamples;
/// @brief Center of Doppler bins (Hz). /// @brief Center of Doppler bins (Hz).
double dopplerMiddle_; double dopplerMiddle;
/// @brief Number of delay bins. /// @brief Number of delay bins.
uint16_t nDelayBins_; uint16_t nDelayBins;
/// @brief Number of Doppler bins. /// @brief Number of Doppler bins.
uint16_t nDopplerBins_; uint16_t nDopplerBins;
/// @brief Number of correlation samples per pulse. /// @brief Number of correlation samples per pulse.
uint16_t nCorr_; uint16_t nCorr;
/// @brief True CPI time (s). /// @brief True CPI time (s).
double cpi_; double cpi;
/// @brief FFTW plans for ambiguity processing. /// @brief FFTW plans for ambiguity processing.
fftw_plan fftXi_; fftw_plan fftXi;
fftw_plan fftYi_; fftw_plan fftYi;
fftw_plan fftZi_; fftw_plan fftZi;
fftw_plan fftDoppler_; fftw_plan fftDoppler;
/// @brief FFTW storage for ambiguity processing. /// @brief FFTW storage for ambiguity processing.
/// @{ /// @{
std::vector<Complex> dataXi_; std::vector<Complex> dataXi;
std::vector<Complex> dataYi_; std::vector<Complex> dataYi;
std::vector<Complex> dataZi_; std::vector<Complex> dataZi;
std::vector<Complex> dataCorr_; std::vector<Complex> dataCorr;
std::vector<Complex> dataDoppler_; std::vector<Complex> dataDoppler;
/// @} /// @}
/// @brief Number of samples to perform FFT per pulse. /// @brief Number of samples to perform FFT per pulse.
uint32_t nfft_; uint32_t nfft;
/// @brief Vector storage for ambiguity processing /// @brief Vector storage for ambiguity processing
/// @{ /// @{
std::vector<Complex> corr_; std::vector<Complex> corr;
std::vector<Complex> delayProfile_; std::vector<Complex> delayProfile;
/// @} /// @}
/// @brief Map to store result. /// @brief Map to store result.
std::unique_ptr<Map<Complex>> map_; std::unique_ptr<Map<Complex>> map;
PerformanceStats latest_performance_;
}; };
std::ostream& operator<<(std::ostream& str, const Ambiguity::PerformanceStats& stats);

View file

@ -1,40 +1,48 @@
#include "HammingNumber.h" #include "HammingNumber.h"
bool HammingNumber::operator!=(const HammingNumber &other) const { bool HammingNumber::operator!=(const HammingNumber &other) const
return true; {
return true;
} }
HammingNumber HammingNumber::begin() const { HammingNumber HammingNumber::begin() const
return *this; {
return *this;
} }
HammingNumber HammingNumber::end() const { HammingNumber HammingNumber::end() const
return *this; {
return *this;
} }
unsigned int HammingNumber::operator*() const { unsigned int HammingNumber::operator*() const
return _x.back(); {
return x.back();
} }
HammingNumber::HammingNumber(const std::vector<unsigned int> &pfs) HammingNumber::HammingNumber(const std::vector<unsigned int> &pfs)
: _H(pfs), _hp(pfs.size(), 0), _hv({pfs}), _x({1}) {} : H(pfs), hp(pfs.size(), 0), hv({pfs}), x({1}) {}
const HammingNumber &HammingNumber::operator++() { const HammingNumber &HammingNumber::operator++()
for (int i = 0; i < _H.size(); i++) {
for (; _hv[i] <= _x.back(); _hv[i] = _x[++_hp[i]] * _H[i]) for (int i = 0; i < H.size(); i++)
; for (; hv[i] <= x.back(); hv[i] = x[++hp[i]] * H[i])
_x.push_back(_hv[0]); ;
for (int i = 1; i < _H.size(); i++) x.push_back(hv[0]);
if (_hv[i] < _x.back()) for (int i = 1; i < H.size(); i++)
_x.back() = _hv[i]; if (hv[i] < x.back())
return *this; x.back() = hv[i];
return *this;
} }
uint32_t next_hamming(uint32_t value) { uint32_t next_hamming(uint32_t value)
for (auto i : HammingNumber({2, 3, 5})) { {
if (i > value) { for (auto i : HammingNumber({2, 3, 5}))
return i; {
} if (i > value)
{
return i;
} }
return 0; }
return 0;
} }

View file

@ -3,7 +3,6 @@
/// @brief Hamming number generator /// @brief Hamming number generator
/// @author Nigel Galloway /// @author Nigel Galloway
/// @cite https://rosettacode.org/wiki/Hamming_numbers /// @cite https://rosettacode.org/wiki/Hamming_numbers
/// @todo Can this be done with constexpr???
#ifndef HAMMING_GENERATOR_H #ifndef HAMMING_GENERATOR_H
#define HAMMING_GENERATOR_H #define HAMMING_GENERATOR_H
@ -15,7 +14,7 @@ class HammingNumber
{ {
private: private:
std::vector<unsigned int> _H, _hp, _hv, _x; std::vector<unsigned int> H, hp, hv, x;
public: public:
bool operator!=(const HammingNumber &other) const; bool operator!=(const HammingNumber &other) const;
@ -24,6 +23,7 @@ class HammingNumber
unsigned int operator*() const; unsigned int operator*() const;
HammingNumber(const std::vector<unsigned int> &pfs); HammingNumber(const std::vector<unsigned int> &pfs);
const HammingNumber &operator++(); const HammingNumber &operator++();
}; };
/// @brief Calculate the next 5-smooth Hamming Number larger than value /// @brief Calculate the next 5-smooth Hamming Number larger than value

View file

@ -12,7 +12,7 @@ The test files are split across directories defined by the type of test.
- **Unit tests** will test the class in isolation. The directory structure mirrors *src*. - **Unit tests** will test the class in isolation. The directory structure mirrors *src*.
- **Functional tests** will test that expected outputs are achieved from defined inputs. An example would be checking the program turns a specific IQ data set to a specific delay-Doppler map. This test category will rely on golden data. - **Functional tests** will test that expected outputs are achieved from defined inputs. An example would be checking the program turns a specific IQ data set to a specific delay-Doppler map. This test category will rely on golden data.
- **Comparison tests** will compare different methods of performing the same task. An example would be comparing 2 methods of clutter filtering. Metrics to be compared may include time and performance. Note there is no pass/fail criteria for comparison tests - this is purely for information. - **Comparison tests** will compare different methods of performing the same task. An example would be comparing 2 methods of clutter filtering. Metrics to be compared may include time and performance. Note there is no specific pass/fail criteria for comparison tests - this is purely for information. A comparison test will pass if executed successfully. Any comparison testing on input parameters for a single class will be handled in the unit test.
## Usage ## Usage
@ -40,4 +40,7 @@ sudo docker exec -it blah2 /blah2/bin/test/comparison/testComparison
``` ```
sudo docker exec -it blah2 /blah2/bin/test/runall.sh sudo docker exec -it blah2 /blah2/bin/test/runall.sh
sudo docker exec -it blah2 /blah2/bin/test/unit/runall.sh
sudo docker exec -it blah2 /blah2/bin/test/functional/runall.sh
sudo docker exec -it blah2 /blah2/bin/test/comparison/runall.sh
``` ```

9
test/data/README.md Normal file
View file

@ -0,0 +1,9 @@
# blah2 Test Data
A set of golden data used for testing.
## Log
| File | Description |
| ------------- | ------------- |
| `todo.rspduo.iq` | Stores 1 CPI of IQ data for the SDRPlay RspDuo. |

View file

@ -84,12 +84,12 @@ TEST_CASE("Constructor", "[constructor]")
Ambiguity ambiguity(delayMin, delayMax, dopplerMin, Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples); dopplerMax, fs, nSamples);
CHECK_THAT(ambiguity.cpi_length_seconds(), Catch::Matchers::WithinAbs(tCpi, 0.02)); CHECK_THAT(ambiguity.get_cpi(), Catch::Matchers::WithinAbs(tCpi, 0.02));
CHECK(ambiguity.doppler_middle() == 0); CHECK(ambiguity.get_doppler_middle() == 0);
CHECK(ambiguity.corr_samples_per_pulse() == 3322); CHECK(ambiguity.get_n_corr() == 3322);
CHECK(ambiguity.delay_bin_count() == delayMax + std::abs(delayMin) + 1); CHECK(ambiguity.get_n_delay_bins() == delayMax + std::abs(delayMin) + 1);
CHECK(ambiguity.doppler_bin_count() == 301); CHECK(ambiguity.get_n_doppler_bins() == 301);
CHECK(ambiguity.fft_bin_count() == 6643); CHECK(ambiguity.get_nfft() == 6643);
} }
/// @brief Test constructor with rounded Hamming number FFT length. /// @brief Test constructor with rounded Hamming number FFT length.
@ -107,12 +107,12 @@ TEST_CASE("Constructor_Round", "[constructor]")
Ambiguity ambiguity(delayMin, delayMax, dopplerMin, Ambiguity ambiguity(delayMin, delayMax, dopplerMin,
dopplerMax, fs, nSamples, true); dopplerMax, fs, nSamples, true);
CHECK_THAT(ambiguity.cpi_length_seconds(), Catch::Matchers::WithinAbs(tCpi, 0.02)); CHECK_THAT(ambiguity.get_cpi(), Catch::Matchers::WithinAbs(tCpi, 0.02));
CHECK(ambiguity.doppler_middle() == 0); CHECK(ambiguity.get_doppler_middle() == 0);
CHECK(ambiguity.corr_samples_per_pulse() == 3322); CHECK(ambiguity.get_n_corr() == 3322);
CHECK(ambiguity.delay_bin_count() == delayMax + std::abs(delayMin) + 1); CHECK(ambiguity.get_n_delay_bins() == delayMax + std::abs(delayMin) + 1);
CHECK(ambiguity.doppler_bin_count() == 301); CHECK(ambiguity.get_n_doppler_bins() == 301);
CHECK(ambiguity.fft_bin_count() == 6750); CHECK(ambiguity.get_nfft() == 6750);
} }
/// @brief Test simple ambiguity processing. /// @brief Test simple ambiguity processing.
@ -141,9 +141,6 @@ TEST_CASE("Process_Simple", "[process]")
map->set_metrics(); map->set_metrics();
CHECK(map->maxPower > 0.0); CHECK(map->maxPower > 0.0);
CHECK(map->noisePower > 0.0); CHECK(map->noisePower > 0.0);
std::cout << "Process_Simple with" << (round_hamming ? " hamming\n" : "out hamming\n")
<< ambiguity.get_latest_performance() << "\n-----------" << std::endl;
} }
/// @brief Test processing from a file. /// @brief Test processing from a file.
@ -178,15 +175,4 @@ TEST_CASE("Process_File", "[process]")
map->set_metrics(); map->set_metrics();
CHECK_THAT(map->maxPower, Catch::Matchers::WithinAbs(30.2816, 0.001)); CHECK_THAT(map->maxPower, Catch::Matchers::WithinAbs(30.2816, 0.001));
CHECK_THAT(map->noisePower, Catch::Matchers::WithinAbs(76.918, 0.001)); CHECK_THAT(map->noisePower, Catch::Matchers::WithinAbs(76.918, 0.001));
std::cout << "Process_File with" << (round_hamming ? " hamming\n" : "out hamming\n")
<< ambiguity.get_latest_performance() << "\n-----------" << std::endl;
} }
/// @brief Test Hamming number calculation.
TEST_CASE("Next_Hamming", "[hamming]")
{
CHECK(next_hamming(104) == 108);
CHECK(next_hamming(3322) == 3375);
CHECK(next_hamming(19043) == 19200);
}

View file

@ -0,0 +1,18 @@
/// @file TestHammingNumber.cpp
/// @brief Unit test for HammingNumber.cpp
/// @author 30hours
/// @author Dan G
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/generators/catch_generators.hpp>
#include "process/meta/HammingNumber.h"
/// @brief Test Hamming number calculation.
TEST_CASE("Next_Hamming", "[hamming]")
{
CHECK(next_hamming(104) == 108);
CHECK(next_hamming(3322) == 3375);
CHECK(next_hamming(19043) == 19200);
}