Change the backends so that they support the diffrent sample rates

This commit is contained in:
JasonLG1979 2023-06-21 22:17:41 -05:00
parent 3bcf5498d2
commit e1ea400220
10 changed files with 392 additions and 402 deletions

View file

@ -2,41 +2,56 @@ use super::{Open, Sink, SinkAsBytes, SinkError, SinkResult};
use crate::config::AudioFormat;
use crate::convert::Converter;
use crate::decoder::AudioPacket;
use crate::{NUM_CHANNELS, SAMPLE_RATE};
use crate::{NUM_CHANNELS, SAMPLE_RATE as DECODER_SAMPLE_RATE};
use alsa::device_name::HintIter;
use alsa::pcm::{Access, Format, Frames, HwParams, PCM};
use alsa::{Direction, ValueOr};
use std::process::exit;
use thiserror::Error;
const MAX_BUFFER: Frames = (SAMPLE_RATE / 2) as Frames;
const MIN_BUFFER: Frames = (SAMPLE_RATE / 10) as Frames;
const ZERO_FRAMES: Frames = 0;
const OPTIMAL_NUM_PERIODS: Frames = 5;
const MIN_NUM_PERIODS: Frames = 2;
const MAX_PERIOD_DIVISOR: Frames = 4;
const MIN_PERIOD_DIVISOR: Frames = 10;
const COMMON_SAMPLE_RATES: [u32; 14] = [
8000, 11025, 16000, 22050, 44100, 48000, 88200, 96000, 176400, 192000, 352800, 384000, 705600,
768000,
];
const SUPPORTED_SAMPLE_RATES: [u32; 4] = [44100, 48000, 88200, 96000];
const FORMATS: [AudioFormat; 6] = [
AudioFormat::S16,
AudioFormat::S24,
AudioFormat::S24_3,
AudioFormat::S32,
AudioFormat::F32,
AudioFormat::F64,
];
#[derive(Debug, Error)]
enum AlsaError {
#[error("<AlsaSink> Device {device} Unsupported Format {alsa_format:?} ({format:?}), {e}")]
#[error("<AlsaSink> Device {device} Unsupported Format {alsa_format} ({format:?}), {e}, Supported Format(s): {supported_formats:?}")]
UnsupportedFormat {
device: String,
alsa_format: Format,
format: AudioFormat,
supported_formats: Vec<String>,
e: alsa::Error,
},
#[error("<AlsaSink> Device {device} Unsupported Channel Count {channel_count}, {e}")]
#[error("<AlsaSink> Device {device} Unsupported Channel Count {channel_count}, {e}, Supported Channel Count(s): {supported_channel_counts:?}")]
UnsupportedChannelCount {
device: String,
channel_count: u8,
supported_channel_counts: Vec<u32>,
e: alsa::Error,
},
#[error("<AlsaSink> Device {device} Unsupported Sample Rate {samplerate}, {e}")]
#[error("<AlsaSink> Device {device} Unsupported Sample Rate {samplerate}, {e}, Supported Sample Rate(s): {supported_rates:?}")]
UnsupportedSampleRate {
device: String,
samplerate: u32,
supported_rates: Vec<u32>,
e: alsa::Error,
},
@ -63,9 +78,6 @@ enum AlsaError {
#[error("<AlsaSink> Could Not Parse Output Name(s) and/or Description(s), {0}")]
Parsing(alsa::Error),
#[error("<AlsaSink>")]
NotConnected,
}
impl From<AlsaError> for SinkError {
@ -75,7 +87,6 @@ impl From<AlsaError> for SinkError {
match e {
DrainFailure(_) | OnWrite(_) => SinkError::OnWrite(es),
PcmSetUp { .. } => SinkError::ConnectionRefused(es),
NotConnected => SinkError::NotConnected(es),
_ => SinkError::InvalidParams(es),
}
}
@ -98,6 +109,8 @@ impl From<AudioFormat> for Format {
pub struct AlsaSink {
pcm: Option<PCM>,
format: AudioFormat,
sample_rate: u32,
latency_scale_factor: f64,
device: String,
period_buffer: Vec<u8>,
}
@ -106,54 +119,83 @@ fn list_compatible_devices() -> SinkResult<()> {
let i = HintIter::new_str(None, "pcm").map_err(AlsaError::Parsing)?;
println!("\n\n\tCompatible alsa device(s):\n");
println!("\t------------------------------------------------------\n");
println!("\t--------------------------------------------------------------------\n");
for a in i {
if let Some(Direction::Playback) = a.direction {
if let Some(name) = a.name {
if let Ok(pcm) = PCM::new(&name, Direction::Playback, false) {
if let Ok(hwp) = HwParams::any(&pcm) {
// Only show devices that support
// 2 ch 44.1 Interleaved.
// surround* outputs throw:
// ALSA lib pcm_route.c:877:(find_matching_chmap) Found no matching channel map
if name.contains(':') && !name.starts_with("surround") {
if let Ok(pcm) = PCM::new(&name, Direction::Playback, false) {
if let Ok(hwp) = HwParams::any(&pcm) {
if hwp.set_access(Access::RWInterleaved).is_ok()
&& hwp.set_channels(NUM_CHANNELS as u32).is_ok()
{
let mut supported_formats_and_samplerates = String::new();
if hwp.set_access(Access::RWInterleaved).is_ok()
&& hwp.set_rate(SAMPLE_RATE, ValueOr::Nearest).is_ok()
&& hwp.set_channels(NUM_CHANNELS as u32).is_ok()
{
let mut supported_formats = vec![];
for format in FORMATS.iter() {
let hwp = hwp.clone();
for f in &[
AudioFormat::S16,
AudioFormat::S24,
AudioFormat::S24_3,
AudioFormat::S32,
AudioFormat::F32,
AudioFormat::F64,
] {
if hwp.test_format(Format::from(*f)).is_ok() {
supported_formats.push(format!("{f:?}"));
if hwp.set_format((*format).into()).is_ok() {
let sample_rates: Vec<String> = SUPPORTED_SAMPLE_RATES
.iter()
.filter_map(|sample_rate| {
let hwp = hwp.clone();
if hwp
.set_rate(*sample_rate, ValueOr::Nearest)
.is_ok()
{
match *sample_rate {
44100 => Some("44.1kHz".to_string()),
48000 => Some("48kHz".to_string()),
88200 => Some("88.2kHz".to_string()),
96000 => Some("96kHz".to_string()),
_ => None,
}
} else {
None
}
})
.collect();
if !sample_rates.is_empty() {
let format_and_sample_rates =
if *format == AudioFormat::S24_3 {
format!(
"\n\t\tFormat: {format:?} Sample Rate(s): {}",
sample_rates.join(", ")
)
} else {
format!(
"\n\t\tFormat: {format:?} Sample Rate(s): {}",
sample_rates.join(", ")
)
};
supported_formats_and_samplerates
.push_str(&format_and_sample_rates);
}
}
}
if !supported_formats_and_samplerates.is_empty() {
println!("\tDevice:\n\n\t\t{name}\n");
println!(
"\tDescription:\n\n\t\t{}\n",
a.desc.unwrap_or_default().replace('\n', "\n\t\t")
);
println!("\tSupported Format & Sample Rate Combinations:\n{supported_formats_and_samplerates}\n");
println!(
"\t--------------------------------------------------------------------\n"
);
}
}
if !supported_formats.is_empty() {
println!("\tDevice:\n\n\t\t{name}\n");
println!(
"\tDescription:\n\n\t\t{}\n",
a.desc.unwrap_or_default().replace('\n', "\n\t\t")
);
println!(
"\tSupported Format(s):\n\n\t\t{}\n",
supported_formats.join(" ")
);
println!(
"\t------------------------------------------------------\n"
);
}
}
};
};
}
}
}
}
@ -162,246 +204,15 @@ fn list_compatible_devices() -> SinkResult<()> {
Ok(())
}
fn open_device(dev_name: &str, format: AudioFormat) -> SinkResult<(PCM, usize)> {
let pcm = PCM::new(dev_name, Direction::Playback, false).map_err(|e| AlsaError::PcmSetUp {
device: dev_name.to_string(),
e,
})?;
let bytes_per_period = {
let hwp = HwParams::any(&pcm).map_err(AlsaError::HwParams)?;
hwp.set_access(Access::RWInterleaved)
.map_err(|e| AlsaError::UnsupportedAccessType {
device: dev_name.to_string(),
e,
})?;
let alsa_format = Format::from(format);
hwp.set_format(alsa_format)
.map_err(|e| AlsaError::UnsupportedFormat {
device: dev_name.to_string(),
alsa_format,
format,
e,
})?;
hwp.set_rate(SAMPLE_RATE, ValueOr::Nearest).map_err(|e| {
AlsaError::UnsupportedSampleRate {
device: dev_name.to_string(),
samplerate: SAMPLE_RATE,
e,
}
})?;
hwp.set_channels(NUM_CHANNELS as u32)
.map_err(|e| AlsaError::UnsupportedChannelCount {
device: dev_name.to_string(),
channel_count: NUM_CHANNELS,
e,
})?;
// Clone the hwp while it's in
// a good working state so that
// in the event of an error setting
// the buffer and period sizes
// we can use the good working clone
// instead of the hwp that's in an
// error state.
let hwp_clone = hwp.clone();
// At a sampling rate of 44100:
// The largest buffer is 22050 Frames (500ms) with 5512 Frame periods (125ms).
// The smallest buffer is 4410 Frames (100ms) with 441 Frame periods (10ms).
// Actual values may vary.
//
// Larger buffer and period sizes are preferred as extremely small values
// will cause high CPU useage.
//
// If no buffer or period size is in those ranges or an error happens
// trying to set the buffer or period size use the device's defaults
// which may not be ideal but are *hopefully* serviceable.
let buffer_size = {
let max = match hwp.get_buffer_size_max() {
Err(e) => {
trace!("Error getting the device's max Buffer size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
};
let min = match hwp.get_buffer_size_min() {
Err(e) => {
trace!("Error getting the device's min Buffer size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
};
let buffer_size = if min < max {
match (MIN_BUFFER..=MAX_BUFFER)
.rev()
.find(|f| (min..=max).contains(f))
{
Some(size) => {
trace!("Desired Frames per Buffer: {:?}", size);
match hwp.set_buffer_size_near(size) {
Err(e) => {
trace!("Error setting the device's Buffer size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
}
}
None => {
trace!("No Desired Buffer size in range reported by the device.");
ZERO_FRAMES
}
}
} else {
trace!("The device's min reported Buffer size was greater than or equal to it's max reported Buffer size.");
ZERO_FRAMES
};
if buffer_size == ZERO_FRAMES {
trace!(
"Desired Buffer Frame range: {:?} - {:?}",
MIN_BUFFER,
MAX_BUFFER
);
trace!(
"Actual Buffer Frame range as reported by the device: {:?} - {:?}",
min,
max
);
}
buffer_size
};
let period_size = {
if buffer_size == ZERO_FRAMES {
ZERO_FRAMES
} else {
let max = match hwp.get_period_size_max() {
Err(e) => {
trace!("Error getting the device's max Period size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
};
let min = match hwp.get_period_size_min() {
Err(e) => {
trace!("Error getting the device's min Period size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
};
let max_period = buffer_size / MAX_PERIOD_DIVISOR;
let min_period = buffer_size / MIN_PERIOD_DIVISOR;
let period_size = if min < max && min_period < max_period {
match (min_period..=max_period)
.rev()
.find(|f| (min..=max).contains(f))
{
Some(size) => {
trace!("Desired Frames per Period: {:?}", size);
match hwp.set_period_size_near(size, ValueOr::Nearest) {
Err(e) => {
trace!("Error setting the device's Period size: {}", e);
ZERO_FRAMES
}
Ok(s) => s,
}
}
None => {
trace!("No Desired Period size in range reported by the device.");
ZERO_FRAMES
}
}
} else {
trace!("The device's min reported Period size was greater than or equal to it's max reported Period size,");
trace!("or the desired min Period size was greater than or equal to the desired max Period size.");
ZERO_FRAMES
};
if period_size == ZERO_FRAMES {
trace!("Buffer size: {:?}", buffer_size);
trace!(
"Desired Period Frame range: {:?} (Buffer size / {:?}) - {:?} (Buffer size / {:?})",
min_period,
MIN_PERIOD_DIVISOR,
max_period,
MAX_PERIOD_DIVISOR,
);
trace!(
"Actual Period Frame range as reported by the device: {:?} - {:?}",
min,
max
);
}
period_size
}
};
if buffer_size == ZERO_FRAMES || period_size == ZERO_FRAMES {
trace!(
"Failed to set Buffer and/or Period size, falling back to the device's defaults."
);
trace!("You may experience higher than normal CPU usage and/or audio issues.");
pcm.hw_params(&hwp_clone).map_err(AlsaError::Pcm)?;
} else {
pcm.hw_params(&hwp).map_err(AlsaError::Pcm)?;
}
let hwp = pcm.hw_params_current().map_err(AlsaError::Pcm)?;
// Don't assume we got what we wanted. Ask to make sure.
let frames_per_period = hwp.get_period_size().map_err(AlsaError::HwParams)?;
let frames_per_buffer = hwp.get_buffer_size().map_err(AlsaError::HwParams)?;
let swp = pcm.sw_params_current().map_err(AlsaError::Pcm)?;
swp.set_start_threshold(frames_per_buffer - frames_per_period)
.map_err(AlsaError::SwParams)?;
pcm.sw_params(&swp).map_err(AlsaError::Pcm)?;
trace!("Actual Frames per Buffer: {:?}", frames_per_buffer);
trace!("Actual Frames per Period: {:?}", frames_per_period);
// Let ALSA do the math for us.
pcm.frames_to_bytes(frames_per_period) as usize
};
trace!("Period Buffer size in bytes: {:?}", bytes_per_period);
Ok((pcm, bytes_per_period))
}
impl Open for AlsaSink {
fn open(device: Option<String>, format: AudioFormat) -> Self {
fn open(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
let name = match device.as_deref() {
Some("?") => match list_compatible_devices() {
Ok(_) => {
exit(0);
}
Err(e) => {
error!("{}", e);
error!("{e}");
exit(1);
}
},
@ -410,11 +221,15 @@ impl Open for AlsaSink {
}
.to_string();
info!("Using AlsaSink with format: {:?}", format);
let latency_scale_factor = DECODER_SAMPLE_RATE as f64 / sample_rate as f64;
info!("Using AlsaSink with format: {format:?}, sample rate: {sample_rate}");
Self {
pcm: None,
format,
sample_rate,
latency_scale_factor,
device: name,
period_buffer: vec![],
}
@ -424,32 +239,19 @@ impl Open for AlsaSink {
impl Sink for AlsaSink {
fn start(&mut self) -> SinkResult<()> {
if self.pcm.is_none() {
let (pcm, bytes_per_period) = open_device(&self.device, self.format)?;
self.pcm = Some(pcm);
if self.period_buffer.capacity() != bytes_per_period {
self.period_buffer = Vec::with_capacity(bytes_per_period);
}
// Should always match the "Period Buffer size in bytes: " trace! message.
trace!(
"Period Buffer capacity: {:?}",
self.period_buffer.capacity()
);
self.open_device()?;
}
Ok(())
}
fn stop(&mut self) -> SinkResult<()> {
if self.pcm.is_some() {
// Zero fill the remainder of the period buffer and
// write any leftover data before draining the actual PCM buffer.
self.period_buffer.resize(self.period_buffer.capacity(), 0);
self.write_buf()?;
let pcm = self.pcm.take().ok_or(AlsaError::NotConnected)?;
// Zero fill the remainder of the period buffer and
// write any leftover data before draining the actual PCM buffer.
self.period_buffer.resize(self.period_buffer.capacity(), 0);
self.write_buf()?;
if let Some(pcm) = self.pcm.take() {
pcm.drain().map_err(AlsaError::DrainFailure)?;
}
@ -458,6 +260,7 @@ impl Sink for AlsaSink {
fn get_latency_pcm(&mut self) -> u64 {
let buffer_len = self.period_buffer.len();
let latency_scale_factor = self.latency_scale_factor;
self.pcm
.as_mut()
@ -467,7 +270,9 @@ impl Sink for AlsaSink {
let frames_in_buffer = pcm.bytes_to_frames(buffer_len as isize);
(delay_frames + frames_in_buffer) as u64
let total_frames = (delay_frames + frames_in_buffer) as f64;
(total_frames * latency_scale_factor) as u64
})
})
.unwrap_or(0)
@ -507,33 +312,203 @@ impl SinkAsBytes for AlsaSink {
impl AlsaSink {
pub const NAME: &'static str = "alsa";
fn write_buf(&mut self) -> SinkResult<()> {
if self.pcm.is_some() {
let write_result = {
let pcm = self.pcm.as_mut().ok_or(AlsaError::NotConnected)?;
fn set_period_and_buffer_size(
hwp: &HwParams,
optimal_buffer_size: Frames,
optimal_period_size: Frames,
) -> bool {
let period_size = match hwp.set_period_size_near(optimal_period_size, ValueOr::Nearest) {
Ok(period_size) => {
if period_size > 0 {
trace!("Closest Supported Period Size to Optimal ({optimal_period_size}): {period_size}");
period_size
} else {
trace!("Error getting Period Size, Period Size must be greater than 0, falling back to the device's default Buffer parameters");
0
}
}
Err(e) => {
trace!("Error getting Period Size: {e}, falling back to the device's default Buffer parameters");
0
}
};
match pcm.io_bytes().writei(&self.period_buffer) {
Ok(_) => Ok(()),
Err(e) => {
// Capture and log the original error as a warning, and then try to recover.
// If recovery fails then forward that error back to player.
warn!(
"Error writing from AlsaSink buffer to PCM, trying to recover, {}",
e
);
pcm.try_recover(e, false).map_err(AlsaError::OnWrite)
if period_size > 0 {
let buffer_size = match hwp
.set_buffer_size_near((period_size * OPTIMAL_NUM_PERIODS).max(optimal_buffer_size))
{
Ok(buffer_size) => {
if buffer_size >= period_size * MIN_NUM_PERIODS {
trace!("Closest Supported Buffer Size to Optimal ({optimal_buffer_size}): {buffer_size}");
buffer_size
} else {
trace!("Error getting Buffer Size, Buffer Size must be at least {period_size} * {MIN_NUM_PERIODS}, falling back to the device's default Buffer parameters");
0
}
}
Err(e) => {
trace!("Error getting Buffer Size: {e}, falling back to the device's default Buffer parameters");
0
}
};
if let Err(e) = write_result {
self.pcm = None;
return Err(e.into());
return buffer_size > 0;
}
false
}
fn open_device(&mut self) -> SinkResult<()> {
let optimal_buffer_size: Frames = self.sample_rate as Frames / 2;
let optimal_period_size: Frames = self.sample_rate as Frames / 10;
let pcm = PCM::new(&self.device, Direction::Playback, false).map_err(|e| {
AlsaError::PcmSetUp {
device: self.device.clone(),
e,
}
})?;
{
let hwp = HwParams::any(&pcm).map_err(AlsaError::HwParams)?;
hwp.set_access(Access::RWInterleaved).map_err(|e| {
AlsaError::UnsupportedAccessType {
device: self.device.clone(),
e,
}
})?;
let alsa_format = self.format.into();
hwp.set_format(alsa_format).map_err(|e| {
let supported_formats = FORMATS
.iter()
.filter_map(|f| {
if hwp.test_format((*f).into()).is_ok() {
Some(format!("{f:?}"))
} else {
None
}
})
.collect();
AlsaError::UnsupportedFormat {
device: self.device.clone(),
alsa_format,
format: self.format,
supported_formats,
e,
}
})?;
hwp.set_rate(self.sample_rate, ValueOr::Nearest)
.map_err(|e| {
let supported_rates = (hwp.get_rate_min().unwrap_or_default()
..=hwp.get_rate_max().unwrap_or_default())
.filter(|r| COMMON_SAMPLE_RATES.contains(r) && hwp.test_rate(*r).is_ok())
.collect();
AlsaError::UnsupportedSampleRate {
device: self.device.clone(),
samplerate: self.sample_rate,
supported_rates,
e,
}
})?;
hwp.set_channels(NUM_CHANNELS as u32).map_err(|e| {
let supported_channel_counts = (hwp.get_channels_min().unwrap_or_default()
..=hwp.get_channels_max().unwrap_or_default())
.filter(|c| hwp.test_channels(*c).is_ok())
.collect();
AlsaError::UnsupportedChannelCount {
device: self.device.clone(),
channel_count: NUM_CHANNELS,
supported_channel_counts,
e,
}
})?;
// Calculate a buffer and period size as close
// to optimal as possible.
// hwp continuity is very important.
let hwp_clone = hwp.clone();
if Self::set_period_and_buffer_size(
&hwp_clone,
optimal_buffer_size,
optimal_period_size,
) {
pcm.hw_params(&hwp_clone).map_err(AlsaError::Pcm)?;
} else {
pcm.hw_params(&hwp).map_err(AlsaError::Pcm)?;
}
let hwp = pcm.hw_params_current().map_err(AlsaError::Pcm)?;
// Don't assume we got what we wanted. Ask to make sure.
let buffer_size = hwp.get_buffer_size().map_err(AlsaError::HwParams)?;
let period_size = hwp.get_period_size().map_err(AlsaError::HwParams)?;
let swp = pcm.sw_params_current().map_err(AlsaError::Pcm)?;
swp.set_start_threshold(buffer_size - period_size)
.map_err(AlsaError::SwParams)?;
pcm.sw_params(&swp).map_err(AlsaError::Pcm)?;
if buffer_size != optimal_buffer_size {
trace!("A Buffer Size of {buffer_size} Frames is Suboptimal");
if buffer_size < optimal_buffer_size {
trace!("A smaller than necessary Buffer Size can lead to Buffer underruns (audio glitches) and high CPU usage.");
} else {
trace!("A larger than necessary Buffer Size can lead to perceivable latency (lag).");
}
}
let optimal_period_size = buffer_size / OPTIMAL_NUM_PERIODS;
if period_size != optimal_period_size {
trace!("A Period Size of {period_size} Frames is Suboptimal");
if period_size < optimal_period_size {
trace!("A smaller than necessary Period Size relative to Buffer Size can lead to high CPU usage.");
} else {
trace!("A larger than necessary Period Size relative to Buffer Size can lessen Buffer underrun (audio glitch) protection.");
}
}
// Let ALSA do the math for us.
let bytes_per_period = pcm.frames_to_bytes(period_size) as usize;
trace!("Period Buffer size in bytes: {bytes_per_period}");
self.period_buffer = Vec::with_capacity(bytes_per_period);
}
self.pcm = Some(pcm);
Ok(())
}
fn write_buf(&mut self) -> SinkResult<()> {
if let Some(pcm) = self.pcm.as_mut() {
if let Err(e) = pcm.io_bytes().writei(&self.period_buffer) {
// Capture and log the original error as a warning, and then try to recover.
// If recovery fails then forward that error back to player.
warn!("Error writing from AlsaSink Buffer to PCM, trying to recover, {e}");
pcm.try_recover(e, false).map_err(AlsaError::OnWrite)?;
}
}
self.period_buffer.clear();
Ok(())
}
}

View file

@ -14,7 +14,7 @@ use std::sync::Arc;
use super::{Open, Sink, SinkAsBytes, SinkError, SinkResult};
use crate::{
config::AudioFormat, convert::Converter, decoder::AudioPacket, NUM_CHANNELS, SAMPLE_RATE,
config::AudioFormat, convert::Converter, decoder::AudioPacket, NUM_CHANNELS,
};
pub struct GstreamerSink {
@ -26,8 +26,8 @@ pub struct GstreamerSink {
}
impl Open for GstreamerSink {
fn open(device: Option<String>, format: AudioFormat) -> Self {
info!("Using GStreamer sink with format: {format:?}");
fn open(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
info!("Using GStreamer sink with format: {format:?}, sample rate: {sample_rate}");
gst::init().expect("failed to init GStreamer!");
let gst_format = match format {
@ -39,7 +39,7 @@ impl Open for GstreamerSink {
AudioFormat::S16 => gst_audio::AUDIO_FORMAT_S16,
};
let gst_info = gst_audio::AudioInfo::builder(gst_format, SAMPLE_RATE, NUM_CHANNELS as u32)
let gst_info = gst_audio::AudioInfo::builder(gst_format, sample_rate, NUM_CHANNELS as u32)
.build()
.expect("Failed to create GStreamer audio format");
let gst_caps = gst_info.to_caps().expect("Failed to create GStreamer caps");

View file

@ -38,11 +38,11 @@ impl ProcessHandler for JackData {
}
impl Open for JackSink {
fn open(client_name: Option<String>, format: AudioFormat) -> Self {
fn open(client_name: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
if format != AudioFormat::F32 {
warn!("JACK currently does not support {format:?} output");
}
info!("Using JACK sink with format {:?}", AudioFormat::F32);
info!("Using JACK sink with format {:?}, sample rate: {sample_rate}", AudioFormat::F32);
let client_name = client_name.unwrap_or_else(|| "librespot".to_string());
let (client, _status) =

View file

@ -20,7 +20,7 @@ pub enum SinkError {
pub type SinkResult<T> = Result<T, SinkError>;
pub trait Open {
fn open(_: Option<String>, format: AudioFormat) -> Self;
fn open(_: Option<String>, format: AudioFormat, sample_rate: u32) -> Self;
}
pub trait Sink {
@ -36,14 +36,18 @@ pub trait Sink {
fn write(&mut self, packet: AudioPacket, converter: &mut Converter) -> SinkResult<()>;
}
pub type SinkBuilder = fn(Option<String>, AudioFormat) -> Box<dyn Sink>;
pub type SinkBuilder = fn(Option<String>, AudioFormat, u32) -> Box<dyn Sink>;
pub trait SinkAsBytes {
fn write_bytes(&mut self, data: &[u8]) -> SinkResult<()>;
}
fn mk_sink<S: Sink + Open + 'static>(device: Option<String>, format: AudioFormat) -> Box<dyn Sink> {
Box::new(S::open(device, format))
fn mk_sink<S: Sink + Open + 'static>(
device: Option<String>,
format: AudioFormat,
sample_rate: u32,
) -> Box<dyn Sink> {
Box::new(S::open(device, format, sample_rate))
}
// reuse code for various backends

View file

@ -42,13 +42,13 @@ pub struct StdoutSink {
}
impl Open for StdoutSink {
fn open(file: Option<String>, format: AudioFormat) -> Self {
fn open(file: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
if let Some("?") = file.as_deref() {
println!("\nUsage:\n\nOutput to stdout:\n\n\t--backend pipe\n\nOutput to file:\n\n\t--backend pipe --device {{filename}}\n");
exit(0);
}
info!("Using StdoutSink (pipe) with format: {:?}", format);
info!("Using StdoutSink (pipe) with format: {format:?}, sample rate: {sample_rate}");
Self {
output: None,

View file

@ -12,14 +12,17 @@ pub enum PortAudioSink<'a> {
F32(
Option<portaudio_rs::stream::Stream<'a, f32, f32>>,
StreamParameters<f32>,
f64,
),
S32(
Option<portaudio_rs::stream::Stream<'a, i32, i32>>,
StreamParameters<i32>,
f64,
),
S16(
Option<portaudio_rs::stream::Stream<'a, i16, i16>>,
StreamParameters<i16>,
f64,
),
}
@ -51,8 +54,8 @@ fn find_output(device: &str) -> Option<DeviceIndex> {
}
impl<'a> Open for PortAudioSink<'a> {
fn open(device: Option<String>, format: AudioFormat) -> PortAudioSink<'a> {
info!("Using PortAudio sink with format: {format:?}");
fn open(device: Option<String>, format: AudioFormat, sample_rate: u32) -> PortAudioSink<'a> {
info!("Using PortAudio sink with format: {format:?}, sample rate: {sample_rate}");
portaudio_rs::initialize().unwrap();
@ -80,13 +83,13 @@ impl<'a> Open for PortAudioSink<'a> {
suggested_latency: latency,
data: 0.0 as $type,
};
$sink(None, params)
$sink(None, params, sample_rate)
}};
}
match format {
AudioFormat::F32 => open_sink!(Self::F32, f32),
AudioFormat::S32 => open_sink!(Self::S32, i32),
AudioFormat::S16 => open_sink!(Self::S16, i16),
AudioFormat::F32 => open_sink!(Self::F32, f32, sample_rate as f64),
AudioFormat::S32 => open_sink!(Self::S32, i32, sample_rate as f64),
AudioFormat::S16 => open_sink!(Self::S16, i16, sample_rate as f64),
_ => {
unimplemented!("PortAudio currently does not support {format:?} output")
}
@ -97,13 +100,13 @@ impl<'a> Open for PortAudioSink<'a> {
impl<'a> Sink for PortAudioSink<'a> {
fn start(&mut self) -> SinkResult<()> {
macro_rules! start_sink {
(ref mut $stream: ident, ref $parameters: ident) => {{
(ref mut $stream: ident, ref $parameters: ident, ref $sample_rate: ident ) => {{
if $stream.is_none() {
*$stream = Some(
Stream::open(
None,
Some(*$parameters),
SAMPLE_RATE as f64,
*$sample_rate,
FRAMES_PER_BUFFER_UNSPECIFIED,
StreamFlags::DITHER_OFF, // no need to dither twice; use librespot dithering instead
None,
@ -116,9 +119,9 @@ impl<'a> Sink for PortAudioSink<'a> {
}
match self {
Self::F32(stream, parameters) => start_sink!(ref mut stream, ref parameters),
Self::S32(stream, parameters) => start_sink!(ref mut stream, ref parameters),
Self::S16(stream, parameters) => start_sink!(ref mut stream, ref parameters),
Self::F32(stream, parameters, sample_rate) => start_sink!(ref mut stream, ref parameters, ref sample_rate),
Self::S32(stream, parameters, sample_rate) => start_sink!(ref mut stream, ref parameters, ref sample_rate),
Self::S16(stream, parameters, sample_rate) => start_sink!(ref mut stream, ref parameters, ref sample_rate),
};
Ok(())

View file

@ -2,7 +2,7 @@ use super::{Open, Sink, SinkAsBytes, SinkError, SinkResult};
use crate::config::AudioFormat;
use crate::convert::Converter;
use crate::decoder::AudioPacket;
use crate::{NUM_CHANNELS, SAMPLE_RATE};
use crate::{NUM_CHANNELS, SAMPLE_RATE as DECODER_SAMPLE_RATE};
use libpulse_binding::{self as pulse, error::PAErr, stream::Direction};
use libpulse_simple_binding::Simple;
use std::env;
@ -24,9 +24,6 @@ enum PulseError {
#[error("<PulseAudioSink> Failed to Drain Pulseaudio Buffer, {0}")]
DrainFailure(PAErr),
#[error("<PulseAudioSink>")]
NotConnected,
#[error("<PulseAudioSink> {0}")]
OnWrite(PAErr),
}
@ -38,40 +35,63 @@ impl From<PulseError> for SinkError {
match e {
DrainFailure(_) | OnWrite(_) => SinkError::OnWrite(es),
ConnectionRefused(_) => SinkError::ConnectionRefused(es),
NotConnected => SinkError::NotConnected(es),
InvalidSampleSpec { .. } => SinkError::InvalidParams(es),
}
}
}
impl From<AudioFormat> for pulse::sample::Format {
fn from(f: AudioFormat) -> pulse::sample::Format {
use AudioFormat::*;
match f {
F64 | F32 => pulse::sample::Format::FLOAT32NE,
S32 => pulse::sample::Format::S32NE,
S24 => pulse::sample::Format::S24_32NE,
S24_3 => pulse::sample::Format::S24NE,
S16 => pulse::sample::Format::S16NE,
}
}
}
pub struct PulseAudioSink {
sink: Option<Simple>,
device: Option<String>,
app_name: String,
stream_desc: String,
format: AudioFormat,
sample_rate: u32,
sample_spec: pulse::sample::Spec,
}
impl Open for PulseAudioSink {
fn open(device: Option<String>, format: AudioFormat) -> Self {
fn open(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
let app_name = env::var("PULSE_PROP_application.name").unwrap_or_default();
let stream_desc = env::var("PULSE_PROP_stream.description").unwrap_or_default();
let mut actual_format = format;
if actual_format == AudioFormat::F64 {
let format = if format == AudioFormat::F64 {
warn!("PulseAudio currently does not support F64 output");
actual_format = AudioFormat::F32;
}
AudioFormat::F32
} else {
format
};
info!("Using PulseAudioSink with format: {actual_format:?}");
info!("Using PulseAudioSink with format: {format:?}, sample rate: {sample_rate}");
let sample_spec = pulse::sample::Spec {
format: format.into(),
channels: NUM_CHANNELS,
rate: sample_rate,
};
Self {
sink: None,
device,
app_name,
stream_desc,
format: actual_format,
format,
sample_rate,
sample_spec,
}
}
}
@ -79,31 +99,15 @@ impl Open for PulseAudioSink {
impl Sink for PulseAudioSink {
fn start(&mut self) -> SinkResult<()> {
if self.sink.is_none() {
// PulseAudio calls S24 and S24_3 different from the rest of the world
let pulse_format = match self.format {
AudioFormat::F32 => pulse::sample::Format::FLOAT32NE,
AudioFormat::S32 => pulse::sample::Format::S32NE,
AudioFormat::S24 => pulse::sample::Format::S24_32NE,
AudioFormat::S24_3 => pulse::sample::Format::S24NE,
AudioFormat::S16 => pulse::sample::Format::S16NE,
_ => unreachable!(),
};
let sample_spec = pulse::sample::Spec {
format: pulse_format,
channels: NUM_CHANNELS,
rate: SAMPLE_RATE,
};
if !sample_spec.is_valid() {
if !self.sample_spec.is_valid() {
let pulse_error = PulseError::InvalidSampleSpec {
pulse_format,
pulse_format: self.sample_spec.format,
format: self.format,
channels: NUM_CHANNELS,
rate: SAMPLE_RATE,
rate: self.sample_rate,
};
return Err(SinkError::from(pulse_error));
return Err(pulse_error.into());
}
let sink = Simple::new(
@ -112,7 +116,7 @@ impl Sink for PulseAudioSink {
Direction::Playback, // Direction.
self.device.as_deref(), // Our device (sink) name.
&self.stream_desc, // Description of our stream.
&sample_spec, // Our sample format.
&self.sample_spec, // Our sample format.
None, // Use default channel map.
None, // Use default buffering attributes.
)
@ -125,9 +129,10 @@ impl Sink for PulseAudioSink {
}
fn stop(&mut self) -> SinkResult<()> {
let sink = self.sink.take().ok_or(PulseError::NotConnected)?;
if let Some(sink) = self.sink.take() {
sink.drain().map_err(PulseError::DrainFailure)?;
}
sink.drain().map_err(PulseError::DrainFailure)?;
Ok(())
}
@ -135,9 +140,9 @@ impl Sink for PulseAudioSink {
self.sink
.as_mut()
.and_then(|sink| {
sink.get_latency()
.ok()
.map(|micro_sec| (micro_sec.as_secs_f64() * SAMPLE_RATE as f64) as u64)
sink.get_latency().ok().map(|micro_sec| {
(micro_sec.as_secs_f64() * DECODER_SAMPLE_RATE as f64).round() as u64
})
})
.unwrap_or(0)
}
@ -147,9 +152,9 @@ impl Sink for PulseAudioSink {
impl SinkAsBytes for PulseAudioSink {
fn write_bytes(&mut self, data: &[u8]) -> SinkResult<()> {
let sink = self.sink.as_mut().ok_or(PulseError::NotConnected)?;
sink.write(data).map_err(PulseError::OnWrite)?;
if let Some(sink) = self.sink.as_mut() {
sink.write(data).map_err(PulseError::OnWrite)?;
}
Ok(())
}

View file

@ -9,7 +9,7 @@ use super::{Sink, SinkError, SinkResult};
use crate::config::AudioFormat;
use crate::convert::Converter;
use crate::decoder::AudioPacket;
use crate::{NUM_CHANNELS, SAMPLE_RATE};
use crate::NUM_CHANNELS;
#[cfg(all(
feature = "rodiojack-backend",
@ -18,16 +18,17 @@ use crate::{NUM_CHANNELS, SAMPLE_RATE};
compile_error!("Rodio JACK backend is currently only supported on linux.");
#[cfg(feature = "rodio-backend")]
pub fn mk_rodio(device: Option<String>, format: AudioFormat) -> Box<dyn Sink> {
Box::new(open(cpal::default_host(), device, format))
pub fn mk_rodio(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Box<dyn Sink> {
Box::new(open(cpal::default_host(), device, format, sample_rate))
}
#[cfg(feature = "rodiojack-backend")]
pub fn mk_rodiojack(device: Option<String>, format: AudioFormat) -> Box<dyn Sink> {
pub fn mk_rodiojack(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Box<dyn Sink> {
Box::new(open(
cpal::host_from_id(cpal::HostId::Jack).unwrap(),
device,
format,
sample_rate,
))
}
@ -62,6 +63,7 @@ impl From<RodioError> for SinkError {
pub struct RodioSink {
rodio_sink: rodio::Sink,
format: AudioFormat,
sample_rate: u32,
_stream: rodio::OutputStream,
}
@ -164,7 +166,7 @@ fn create_sink(
Ok((sink, stream))
}
pub fn open(host: cpal::Host, device: Option<String>, format: AudioFormat) -> RodioSink {
pub fn open(host: cpal::Host, device: Option<String>, format: AudioFormat, sample_rate: u32) -> RodioSink {
info!(
"Using Rodio sink with format {format:?} and cpal host: {}",
host.id().name()
@ -180,6 +182,7 @@ pub fn open(host: cpal::Host, device: Option<String>, format: AudioFormat) -> Ro
RodioSink {
rodio_sink: sink,
format,
sample_rate,
_stream: stream,
}
}
@ -205,7 +208,7 @@ impl Sink for RodioSink {
let samples_f32: &[f32] = &converter.f64_to_f32(samples);
let source = rodio::buffer::SamplesBuffer::new(
NUM_CHANNELS as u16,
SAMPLE_RATE,
self.sample_rate,
samples_f32,
);
self.rodio_sink.append(source);
@ -214,7 +217,7 @@ impl Sink for RodioSink {
let samples_s16: &[i16] = &converter.f64_to_s16(samples);
let source = rodio::buffer::SamplesBuffer::new(
NUM_CHANNELS as u16,
SAMPLE_RATE,
self.sample_rate,
samples_s16,
);
self.rodio_sink.append(source);

View file

@ -14,8 +14,8 @@ pub enum SdlSink {
}
impl Open for SdlSink {
fn open(device: Option<String>, format: AudioFormat) -> Self {
info!("Using SDL sink with format: {:?}", format);
fn open(device: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
info!("Using SDL sink with format: {format:?}, sample rate: {sample_rate}");
if device.is_some() {
warn!("SDL sink does not support specifying a device name");
@ -27,7 +27,7 @@ impl Open for SdlSink {
.expect("could not initialize SDL audio subsystem");
let desired_spec = AudioSpecDesired {
freq: Some(SAMPLE_RATE as i32),
freq: Some(sample_rate as i32),
channels: Some(NUM_CHANNELS),
samples: None,
};

View file

@ -66,13 +66,13 @@ pub struct SubprocessSink {
}
impl Open for SubprocessSink {
fn open(shell_command: Option<String>, format: AudioFormat) -> Self {
fn open(shell_command: Option<String>, format: AudioFormat, sample_rate: u32) -> Self {
if let Some("?") = shell_command.as_deref() {
println!("\nUsage:\n\nOutput to a Subprocess:\n\n\t--backend subprocess --device {{shell_command}}\n");
exit(0);
}
info!("Using SubprocessSink with format: {:?}", format);
info!("Using SubprocessSink with format: {format:?}, sample rate: {sample_rate}");
Self {
shell_command,