librespot/playback/src/player.rs
Roderick van Domburg 2a79af1f0a
Migrate to Rust 2021
2022-08-02 21:42:38 +02:00

2274 lines
81 KiB
Rust

use std::{
cmp::max,
collections::HashMap,
fmt,
future::Future,
io::{self, Read, Seek, SeekFrom},
mem,
pin::Pin,
process::exit,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
task::{Context, Poll},
thread,
time::{Duration, Instant},
};
use byteorder::{LittleEndian, ReadBytesExt};
use futures_util::{
future, future::FusedFuture, stream::futures_unordered::FuturesUnordered, StreamExt,
TryFutureExt,
};
use parking_lot::Mutex;
use symphonia::core::io::MediaSource;
use tokio::sync::{mpsc, oneshot};
use crate::{
audio::{
AudioDecrypt, AudioFile, StreamLoaderController, READ_AHEAD_BEFORE_PLAYBACK,
READ_AHEAD_BEFORE_PLAYBACK_ROUNDTRIPS, READ_AHEAD_DURING_PLAYBACK,
READ_AHEAD_DURING_PLAYBACK_ROUNDTRIPS,
},
audio_backend::Sink,
config::{Bitrate, NormalisationMethod, NormalisationType, PlayerConfig},
convert::Converter,
core::{util::SeqGenerator, Error, Session, SpotifyId},
decoder::{AudioDecoder, AudioPacket, AudioPacketPosition, SymphoniaDecoder},
metadata::audio::{AudioFileFormat, AudioFiles, AudioItem},
mixer::VolumeGetter,
};
#[cfg(feature = "passthrough-decoder")]
use crate::decoder::PassthroughDecoder;
use crate::SAMPLES_PER_SECOND;
const PRELOAD_NEXT_TRACK_BEFORE_END_DURATION_MS: u32 = 30000;
pub const DB_VOLTAGE_RATIO: f64 = 20.0;
pub const PCM_AT_0DBFS: f64 = 1.0;
// Spotify inserts a custom Ogg packet at the start with custom metadata values, that you would
// otherwise expect in Vorbis comments. This packet isn't well-formed and players may balk at it.
const SPOTIFY_OGG_HEADER_END: u64 = 0xa7;
pub type PlayerResult = Result<(), Error>;
pub struct Player {
commands: Option<mpsc::UnboundedSender<PlayerCommand>>,
thread_handle: Option<thread::JoinHandle<()>>,
play_request_id_generator: SeqGenerator<u64>,
}
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum SinkStatus {
Running,
Closed,
TemporarilyClosed,
}
pub type SinkEventCallback = Box<dyn Fn(SinkStatus) + Send>;
struct PlayerInternal {
session: Session,
config: PlayerConfig,
commands: mpsc::UnboundedReceiver<PlayerCommand>,
load_handles: Arc<Mutex<HashMap<thread::ThreadId, thread::JoinHandle<()>>>>,
state: PlayerState,
preload: PlayerPreload,
sink: Box<dyn Sink>,
sink_status: SinkStatus,
sink_event_callback: Option<SinkEventCallback>,
volume_getter: Box<dyn VolumeGetter + Send>,
event_senders: Vec<mpsc::UnboundedSender<PlayerEvent>>,
converter: Converter,
normalisation_integrator: f64,
normalisation_peak: f64,
auto_normalise_as_album: bool,
player_id: usize,
}
static PLAYER_COUNTER: AtomicUsize = AtomicUsize::new(0);
enum PlayerCommand {
Load {
track_id: SpotifyId,
play_request_id: u64,
play: bool,
position_ms: u32,
},
Preload {
track_id: SpotifyId,
},
Play,
Pause,
Stop,
Seek(u32),
AddEventSender(mpsc::UnboundedSender<PlayerEvent>),
SetSinkEventCallback(Option<SinkEventCallback>),
EmitVolumeSetEvent(u16),
SetAutoNormaliseAsAlbum(bool),
SkipExplicitContent(),
}
#[derive(Debug, Clone)]
pub enum PlayerEvent {
// Fired when the player is stopped (e.g. by issuing a "stop" command to the player).
Stopped {
play_request_id: u64,
track_id: SpotifyId,
},
// The player started working on playback of a track while it was in a stopped state.
// This is always immediately followed up by a "Loading" or "Playing" event.
Started {
play_request_id: u64,
track_id: SpotifyId,
position_ms: u32,
},
// Same as started but in the case that the player already had a track loaded.
// The player was either playing the loaded track or it was paused.
Changed {
old_track_id: SpotifyId,
new_track_id: SpotifyId,
},
// The player is delayed by loading a track.
Loading {
play_request_id: u64,
track_id: SpotifyId,
position_ms: u32,
},
// The player is preloading a track.
Preloading {
track_id: SpotifyId,
},
// The player is playing a track.
// This event is issued at the start of playback of whenever the position must be communicated
// because it is out of sync. This includes:
// start of a track
// un-pausing
// after a seek
// after a buffer-underrun
Playing {
play_request_id: u64,
track_id: SpotifyId,
position_ms: u32,
duration_ms: u32,
},
// The player entered a paused state.
Paused {
play_request_id: u64,
track_id: SpotifyId,
position_ms: u32,
duration_ms: u32,
},
// The player thinks it's a good idea to issue a preload command for the next track now.
// This event is intended for use within spirc.
TimeToPreloadNextTrack {
play_request_id: u64,
track_id: SpotifyId,
},
// The player reached the end of a track.
// This event is intended for use within spirc. Spirc will respond by issuing another command
// which will trigger another event (e.g. Changed or Stopped)
EndOfTrack {
play_request_id: u64,
track_id: SpotifyId,
},
// The player was unable to load the requested track.
Unavailable {
play_request_id: u64,
track_id: SpotifyId,
},
// The mixer volume was set to a new level.
VolumeSet {
volume: u16,
},
}
impl PlayerEvent {
pub fn get_play_request_id(&self) -> Option<u64> {
use PlayerEvent::*;
match self {
Loading {
play_request_id, ..
}
| Unavailable {
play_request_id, ..
}
| Started {
play_request_id, ..
}
| Playing {
play_request_id, ..
}
| TimeToPreloadNextTrack {
play_request_id, ..
}
| EndOfTrack {
play_request_id, ..
}
| Paused {
play_request_id, ..
}
| Stopped {
play_request_id, ..
} => Some(*play_request_id),
Changed { .. } | Preloading { .. } | VolumeSet { .. } => None,
}
}
}
pub type PlayerEventChannel = mpsc::UnboundedReceiver<PlayerEvent>;
pub fn db_to_ratio(db: f64) -> f64 {
f64::powf(10.0, db / DB_VOLTAGE_RATIO)
}
pub fn ratio_to_db(ratio: f64) -> f64 {
ratio.log10() * DB_VOLTAGE_RATIO
}
pub fn duration_to_coefficient(duration: Duration) -> f64 {
f64::exp(-1.0 / (duration.as_secs_f64() * SAMPLES_PER_SECOND as f64))
}
pub fn coefficient_to_duration(coefficient: f64) -> Duration {
Duration::from_secs_f64(-1.0 / f64::ln(coefficient) / SAMPLES_PER_SECOND as f64)
}
#[derive(Clone, Copy, Debug)]
pub struct NormalisationData {
// Spotify provides these as `f32`, but audio metadata can contain up to `f64`.
// Also, this negates the need for casting during sample processing.
pub track_gain_db: f64,
pub track_peak: f64,
pub album_gain_db: f64,
pub album_peak: f64,
}
impl Default for NormalisationData {
fn default() -> Self {
Self {
track_gain_db: 0.0,
track_peak: 1.0,
album_gain_db: 0.0,
album_peak: 1.0,
}
}
}
impl NormalisationData {
fn parse_from_ogg<T: Read + Seek>(mut file: T) -> io::Result<NormalisationData> {
const SPOTIFY_NORMALIZATION_HEADER_START_OFFSET: u64 = 144;
let newpos = file.seek(SeekFrom::Start(SPOTIFY_NORMALIZATION_HEADER_START_OFFSET))?;
if newpos != SPOTIFY_NORMALIZATION_HEADER_START_OFFSET {
error!(
"NormalisationData::parse_from_file seeking to {} but position is now {}",
SPOTIFY_NORMALIZATION_HEADER_START_OFFSET, newpos
);
error!("Falling back to default (non-track and non-album) normalisation data.");
return Ok(NormalisationData::default());
}
let track_gain_db = file.read_f32::<LittleEndian>()? as f64;
let track_peak = file.read_f32::<LittleEndian>()? as f64;
let album_gain_db = file.read_f32::<LittleEndian>()? as f64;
let album_peak = file.read_f32::<LittleEndian>()? as f64;
let r = NormalisationData {
track_gain_db,
track_peak,
album_gain_db,
album_peak,
};
Ok(r)
}
fn get_factor(config: &PlayerConfig, data: NormalisationData) -> f64 {
if !config.normalisation {
return 1.0;
}
let (gain_db, gain_peak) = if config.normalisation_type == NormalisationType::Album {
(data.album_gain_db, data.album_peak)
} else {
(data.track_gain_db, data.track_peak)
};
// As per the ReplayGain 1.0 & 2.0 (proposed) spec:
// https://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification#Clipping_prevention
// https://wiki.hydrogenaud.io/index.php?title=ReplayGain_2.0_specification#Clipping_prevention
let normalisation_factor = if config.normalisation_method == NormalisationMethod::Basic {
// For Basic Normalisation, factor = min(ratio of (ReplayGain + PreGain), 1.0 / peak level).
// https://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification#Peak_amplitude
// https://wiki.hydrogenaud.io/index.php?title=ReplayGain_2.0_specification#Peak_amplitude
// We then limit that to 1.0 as not to exceed dBFS (0.0 dB).
let factor = f64::min(
db_to_ratio(gain_db + config.normalisation_pregain_db),
PCM_AT_0DBFS / gain_peak,
);
if factor > PCM_AT_0DBFS {
info!(
"Lowering gain by {:.2} dB for the duration of this track to avoid potentially exceeding dBFS.",
ratio_to_db(factor)
);
PCM_AT_0DBFS
} else {
factor
}
} else {
// For Dynamic Normalisation it's up to the player to decide,
// factor = ratio of (ReplayGain + PreGain).
// We then let the dynamic limiter handle gain reduction.
let factor = db_to_ratio(gain_db + config.normalisation_pregain_db);
let threshold_ratio = db_to_ratio(config.normalisation_threshold_dbfs);
if factor > PCM_AT_0DBFS {
let factor_db = gain_db + config.normalisation_pregain_db;
let limiting_db = factor_db + config.normalisation_threshold_dbfs.abs();
warn!(
"This track may exceed dBFS by {:.2} dB and be subject to {:.2} dB of dynamic limiting at it's peak.",
factor_db, limiting_db
);
} else if factor > threshold_ratio {
let limiting_db = gain_db
+ config.normalisation_pregain_db
+ config.normalisation_threshold_dbfs.abs();
info!(
"This track may be subject to {:.2} dB of dynamic limiting at it's peak.",
limiting_db
);
}
factor
};
debug!("Normalisation Data: {:?}", data);
debug!(
"Calculated Normalisation Factor for {:?}: {:.2}%",
config.normalisation_type,
normalisation_factor * 100.0
);
normalisation_factor
}
}
impl Player {
pub fn new<F>(
config: PlayerConfig,
session: Session,
volume_getter: Box<dyn VolumeGetter + Send>,
sink_builder: F,
) -> (Player, PlayerEventChannel)
where
F: FnOnce() -> Box<dyn Sink> + Send + 'static,
{
let (cmd_tx, cmd_rx) = mpsc::unbounded_channel();
let (event_sender, event_receiver) = mpsc::unbounded_channel();
if config.normalisation {
debug!("Normalisation Type: {:?}", config.normalisation_type);
debug!(
"Normalisation Pregain: {:.1} dB",
config.normalisation_pregain_db
);
debug!(
"Normalisation Threshold: {:.1} dBFS",
config.normalisation_threshold_dbfs
);
debug!("Normalisation Method: {:?}", config.normalisation_method);
if config.normalisation_method == NormalisationMethod::Dynamic {
// as_millis() has rounding errors (truncates)
debug!(
"Normalisation Attack: {:.0} ms",
coefficient_to_duration(config.normalisation_attack_cf).as_secs_f64() * 1000.
);
debug!(
"Normalisation Release: {:.0} ms",
coefficient_to_duration(config.normalisation_release_cf).as_secs_f64() * 1000.
);
debug!("Normalisation Knee: {} dB", config.normalisation_knee_db);
}
}
let handle = thread::spawn(move || {
let player_id = PLAYER_COUNTER.fetch_add(1, Ordering::AcqRel);
debug!("new Player [{}]", player_id);
let converter = Converter::new(config.ditherer);
let internal = PlayerInternal {
session,
config,
commands: cmd_rx,
load_handles: Arc::new(Mutex::new(HashMap::new())),
state: PlayerState::Stopped,
preload: PlayerPreload::None,
sink: sink_builder(),
sink_status: SinkStatus::Closed,
sink_event_callback: None,
volume_getter,
event_senders: [event_sender].to_vec(),
converter,
normalisation_peak: 0.0,
normalisation_integrator: 0.0,
auto_normalise_as_album: false,
player_id,
};
// While PlayerInternal is written as a future, it still contains blocking code.
// It must be run by using block_on() in a dedicated thread.
let runtime = tokio::runtime::Runtime::new().expect("Failed to create Tokio runtime");
runtime.block_on(internal);
debug!("PlayerInternal thread finished.");
});
(
Player {
commands: Some(cmd_tx),
thread_handle: Some(handle),
play_request_id_generator: SeqGenerator::new(0),
},
event_receiver,
)
}
fn command(&self, cmd: PlayerCommand) {
if let Some(commands) = self.commands.as_ref() {
if let Err(e) = commands.send(cmd) {
error!("Player Commands Error: {}", e);
}
}
}
pub fn load(&mut self, track_id: SpotifyId, start_playing: bool, position_ms: u32) -> u64 {
let play_request_id = self.play_request_id_generator.get();
self.command(PlayerCommand::Load {
track_id,
play_request_id,
play: start_playing,
position_ms,
});
play_request_id
}
pub fn preload(&self, track_id: SpotifyId) {
self.command(PlayerCommand::Preload { track_id });
}
pub fn play(&self) {
self.command(PlayerCommand::Play)
}
pub fn pause(&self) {
self.command(PlayerCommand::Pause)
}
pub fn stop(&self) {
self.command(PlayerCommand::Stop)
}
pub fn seek(&self, position_ms: u32) {
self.command(PlayerCommand::Seek(position_ms));
}
pub fn get_player_event_channel(&self) -> PlayerEventChannel {
let (event_sender, event_receiver) = mpsc::unbounded_channel();
self.command(PlayerCommand::AddEventSender(event_sender));
event_receiver
}
pub async fn await_end_of_track(&self) {
let mut channel = self.get_player_event_channel();
while let Some(event) = channel.recv().await {
if matches!(
event,
PlayerEvent::EndOfTrack { .. } | PlayerEvent::Stopped { .. }
) {
return;
}
}
}
pub fn set_sink_event_callback(&self, callback: Option<SinkEventCallback>) {
self.command(PlayerCommand::SetSinkEventCallback(callback));
}
pub fn emit_volume_set_event(&self, volume: u16) {
self.command(PlayerCommand::EmitVolumeSetEvent(volume));
}
pub fn set_auto_normalise_as_album(&self, setting: bool) {
self.command(PlayerCommand::SetAutoNormaliseAsAlbum(setting));
}
pub fn skip_explicit_content(&self) {
self.command(PlayerCommand::SkipExplicitContent());
}
}
impl Drop for Player {
fn drop(&mut self) {
debug!("Shutting down player thread ...");
self.commands = None;
if let Some(handle) = self.thread_handle.take() {
if let Err(e) = handle.join() {
error!("Player thread Error: {:?}", e);
}
}
}
}
struct PlayerLoadedTrackData {
decoder: Decoder,
normalisation_data: NormalisationData,
stream_loader_controller: StreamLoaderController,
bytes_per_second: usize,
duration_ms: u32,
stream_position_ms: u32,
is_explicit: bool,
}
enum PlayerPreload {
None,
Loading {
track_id: SpotifyId,
loader: Pin<Box<dyn FusedFuture<Output = Result<PlayerLoadedTrackData, ()>> + Send>>,
},
Ready {
track_id: SpotifyId,
loaded_track: Box<PlayerLoadedTrackData>,
},
}
type Decoder = Box<dyn AudioDecoder + Send>;
enum PlayerState {
Stopped,
Loading {
track_id: SpotifyId,
play_request_id: u64,
start_playback: bool,
loader: Pin<Box<dyn FusedFuture<Output = Result<PlayerLoadedTrackData, ()>> + Send>>,
},
Paused {
track_id: SpotifyId,
play_request_id: u64,
decoder: Decoder,
normalisation_data: NormalisationData,
normalisation_factor: f64,
stream_loader_controller: StreamLoaderController,
bytes_per_second: usize,
duration_ms: u32,
stream_position_ms: u32,
suggested_to_preload_next_track: bool,
is_explicit: bool,
},
Playing {
track_id: SpotifyId,
play_request_id: u64,
decoder: Decoder,
normalisation_data: NormalisationData,
normalisation_factor: f64,
stream_loader_controller: StreamLoaderController,
bytes_per_second: usize,
duration_ms: u32,
stream_position_ms: u32,
reported_nominal_start_time: Option<Instant>,
suggested_to_preload_next_track: bool,
is_explicit: bool,
},
EndOfTrack {
track_id: SpotifyId,
play_request_id: u64,
loaded_track: PlayerLoadedTrackData,
},
Invalid,
}
impl PlayerState {
fn is_playing(&self) -> bool {
use self::PlayerState::*;
match *self {
Stopped | EndOfTrack { .. } | Paused { .. } | Loading { .. } => false,
Playing { .. } => true,
Invalid => {
error!("PlayerState::is_playing in invalid state");
exit(1);
}
}
}
#[allow(dead_code)]
fn is_stopped(&self) -> bool {
use self::PlayerState::*;
matches!(self, Stopped)
}
#[allow(dead_code)]
fn is_loading(&self) -> bool {
use self::PlayerState::*;
matches!(self, Loading { .. })
}
fn decoder(&mut self) -> Option<&mut Decoder> {
use self::PlayerState::*;
match *self {
Stopped | EndOfTrack { .. } | Loading { .. } => None,
Paused {
ref mut decoder, ..
}
| Playing {
ref mut decoder, ..
} => Some(decoder),
Invalid => {
error!("PlayerState::decoder in invalid state");
exit(1);
}
}
}
fn playing_to_end_of_track(&mut self) {
use self::PlayerState::*;
let new_state = mem::replace(self, Invalid);
match new_state {
Playing {
track_id,
play_request_id,
decoder,
duration_ms,
bytes_per_second,
normalisation_data,
stream_loader_controller,
stream_position_ms,
is_explicit,
..
} => {
*self = EndOfTrack {
track_id,
play_request_id,
loaded_track: PlayerLoadedTrackData {
decoder,
normalisation_data,
stream_loader_controller,
bytes_per_second,
duration_ms,
stream_position_ms,
is_explicit,
},
};
}
_ => {
error!(
"Called playing_to_end_of_track in non-playing state: {:?}",
new_state
);
exit(1);
}
}
}
fn paused_to_playing(&mut self) {
use self::PlayerState::*;
let new_state = mem::replace(self, Invalid);
match new_state {
Paused {
track_id,
play_request_id,
decoder,
normalisation_data,
normalisation_factor,
stream_loader_controller,
duration_ms,
bytes_per_second,
stream_position_ms,
suggested_to_preload_next_track,
is_explicit,
} => {
*self = Playing {
track_id,
play_request_id,
decoder,
normalisation_data,
normalisation_factor,
stream_loader_controller,
duration_ms,
bytes_per_second,
stream_position_ms,
reported_nominal_start_time: None,
suggested_to_preload_next_track,
is_explicit,
};
}
_ => {
error!(
"PlayerState::paused_to_playing in invalid state: {:?}",
new_state
);
exit(1);
}
}
}
fn playing_to_paused(&mut self) {
use self::PlayerState::*;
let new_state = mem::replace(self, Invalid);
match new_state {
Playing {
track_id,
play_request_id,
decoder,
normalisation_data,
normalisation_factor,
stream_loader_controller,
duration_ms,
bytes_per_second,
stream_position_ms,
reported_nominal_start_time: _,
suggested_to_preload_next_track,
is_explicit,
} => {
*self = Paused {
track_id,
play_request_id,
decoder,
normalisation_data,
normalisation_factor,
stream_loader_controller,
duration_ms,
bytes_per_second,
stream_position_ms,
suggested_to_preload_next_track,
is_explicit,
};
}
_ => {
error!(
"PlayerState::playing_to_paused in invalid state: {:?}",
new_state
);
exit(1);
}
}
}
}
struct PlayerTrackLoader {
session: Session,
config: PlayerConfig,
}
impl PlayerTrackLoader {
async fn find_available_alternative(&self, audio: AudioItem) -> Option<AudioItem> {
if let Err(e) = audio.availability {
error!("Track is unavailable: {}", e);
None
} else if !audio.files.is_empty() {
Some(audio)
} else if let Some(alternatives) = &audio.alternatives {
let alternatives: FuturesUnordered<_> = alternatives
.iter()
.map(|alt_id| AudioItem::get_file(&self.session, *alt_id))
.collect();
alternatives
.filter_map(|x| future::ready(x.ok()))
.filter(|x| future::ready(x.availability.is_ok()))
.next()
.await
} else {
error!("Track should be available, but no alternatives found.");
None
}
}
fn stream_data_rate(&self, format: AudioFileFormat) -> usize {
let kbps = match format {
AudioFileFormat::OGG_VORBIS_96 => 12,
AudioFileFormat::OGG_VORBIS_160 => 20,
AudioFileFormat::OGG_VORBIS_320 => 40,
AudioFileFormat::MP3_256 => 32,
AudioFileFormat::MP3_320 => 40,
AudioFileFormat::MP3_160 => 20,
AudioFileFormat::MP3_96 => 12,
AudioFileFormat::MP3_160_ENC => 20,
AudioFileFormat::AAC_24 => 3,
AudioFileFormat::AAC_48 => 6,
AudioFileFormat::FLAC_FLAC => 112, // assume 900 kbit/s on average
};
kbps * 1024
}
async fn load_track(
&self,
spotify_id: SpotifyId,
position_ms: u32,
) -> Option<PlayerLoadedTrackData> {
let audio = match AudioItem::get_file(&self.session, spotify_id).await {
Ok(audio) => match self.find_available_alternative(audio).await {
Some(audio) => audio,
None => {
warn!(
"<{}> is not available",
spotify_id.to_uri().unwrap_or_default()
);
return None;
}
},
Err(e) => {
error!("Unable to load audio item: {:?}", e);
return None;
}
};
info!(
"Loading <{}> with Spotify URI <{}>",
audio.name, audio.spotify_uri
);
let is_explicit = audio.is_explicit;
if is_explicit {
if let Some(value) = self.session.get_user_attribute("filter-explicit-content") {
if &value == "1" {
warn!("Track is marked as explicit, which client setting forbids.");
return None;
}
}
}
if audio.duration < 0 {
error!(
"Track duration for <{}> cannot be {}",
spotify_id.to_uri().unwrap_or_default(),
audio.duration
);
return None;
}
let duration_ms = audio.duration as u32;
// (Most) podcasts seem to support only 96 kbps Ogg Vorbis, so fall back to it
let formats = match self.config.bitrate {
Bitrate::Bitrate96 => [
AudioFileFormat::OGG_VORBIS_96,
AudioFileFormat::MP3_96,
AudioFileFormat::OGG_VORBIS_160,
AudioFileFormat::MP3_160,
AudioFileFormat::MP3_256,
AudioFileFormat::OGG_VORBIS_320,
AudioFileFormat::MP3_320,
],
Bitrate::Bitrate160 => [
AudioFileFormat::OGG_VORBIS_160,
AudioFileFormat::MP3_160,
AudioFileFormat::OGG_VORBIS_96,
AudioFileFormat::MP3_96,
AudioFileFormat::MP3_256,
AudioFileFormat::OGG_VORBIS_320,
AudioFileFormat::MP3_320,
],
Bitrate::Bitrate320 => [
AudioFileFormat::OGG_VORBIS_320,
AudioFileFormat::MP3_320,
AudioFileFormat::MP3_256,
AudioFileFormat::OGG_VORBIS_160,
AudioFileFormat::MP3_160,
AudioFileFormat::OGG_VORBIS_96,
AudioFileFormat::MP3_96,
],
};
let (format, file_id) =
match formats
.iter()
.find_map(|format| match audio.files.get(format) {
Some(&file_id) => Some((*format, file_id)),
_ => None,
}) {
Some(t) => t,
None => {
warn!("<{}> is not available in any supported format", audio.name);
return None;
}
};
let bytes_per_second = self.stream_data_rate(format);
// This is only a loop to be able to reload the file if an error occurred
// while opening a cached file.
loop {
let encrypted_file = AudioFile::open(&self.session, file_id, bytes_per_second);
let encrypted_file = match encrypted_file.await {
Ok(encrypted_file) => encrypted_file,
Err(e) => {
error!("Unable to load encrypted file: {:?}", e);
return None;
}
};
let is_cached = encrypted_file.is_cached();
let stream_loader_controller = encrypted_file.get_stream_loader_controller().ok()?;
// Not all audio files are encrypted. If we can't get a key, try loading the track
// without decryption. If the file was encrypted after all, the decoder will fail
// parsing and bail out, so we should be safe from outputting ear-piercing noise.
let key = match self.session.audio_key().request(spotify_id, file_id).await {
Ok(key) => Some(key),
Err(e) => {
warn!("Unable to load key, continuing without decryption: {}", e);
None
}
};
let mut decrypted_file = AudioDecrypt::new(key, encrypted_file);
let is_ogg_vorbis = AudioFiles::is_ogg_vorbis(format);
let (offset, mut normalisation_data) = if is_ogg_vorbis {
// Spotify stores normalisation data in a custom Ogg packet instead of Vorbis comments.
let normalisation_data =
NormalisationData::parse_from_ogg(&mut decrypted_file).ok();
(SPOTIFY_OGG_HEADER_END, normalisation_data)
} else {
(0, None)
};
let audio_file = match Subfile::new(
decrypted_file,
offset,
stream_loader_controller.len() as u64,
) {
Ok(audio_file) => audio_file,
Err(e) => {
error!("PlayerTrackLoader::load_track error opening subfile: {}", e);
return None;
}
};
let mut symphonia_decoder = |audio_file, format| {
SymphoniaDecoder::new(audio_file, format).map(|mut decoder| {
// For formats other that Vorbis, we'll try getting normalisation data from
// ReplayGain metadata fields, if present.
if normalisation_data.is_none() {
normalisation_data = decoder.normalisation_data();
}
Box::new(decoder) as Decoder
})
};
#[cfg(feature = "passthrough-decoder")]
let decoder_type = if self.config.passthrough {
PassthroughDecoder::new(audio_file, format).map(|x| Box::new(x) as Decoder)
} else {
symphonia_decoder(audio_file, format)
};
#[cfg(not(feature = "passthrough-decoder"))]
let decoder_type = symphonia_decoder(audio_file, format);
let normalisation_data = normalisation_data.unwrap_or_else(|| {
warn!("Unable to get normalisation data, continuing with defaults.");
NormalisationData::default()
});
let mut decoder = match decoder_type {
Ok(decoder) => decoder,
Err(e) if is_cached => {
warn!(
"Unable to read cached audio file: {}. Trying to download it.",
e
);
match self.session.cache() {
Some(cache) => {
if cache.remove_file(file_id).is_err() {
error!("Error removing file from cache");
return None;
}
}
None => {
error!("If the audio file is cached, a cache should exist");
return None;
}
}
// Just try it again
continue;
}
Err(e) => {
error!("Unable to read audio file: {}", e);
return None;
}
};
// Ensure the starting position. Even when we want to play from the beginning,
// the cursor may have been moved by parsing normalisation data. This may not
// matter for playback (but won't hurt either), but may be useful for the
// passthrough decoder.
let stream_position_ms = match decoder.seek(position_ms) {
Ok(new_position_ms) => new_position_ms,
Err(e) => {
error!(
"PlayerTrackLoader::load_track error seeking to starting position {}: {}",
position_ms, e
);
return None;
}
};
// Ensure streaming mode now that we are ready to play from the requested position.
stream_loader_controller.set_stream_mode();
info!("<{}> ({} ms) loaded", audio.name, audio.duration);
return Some(PlayerLoadedTrackData {
decoder,
normalisation_data,
stream_loader_controller,
bytes_per_second,
duration_ms,
stream_position_ms,
is_explicit,
});
}
}
}
impl Future for PlayerInternal {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
// While this is written as a future, it still contains blocking code.
// It must be run on its own thread.
let passthrough = self.config.passthrough;
loop {
let mut all_futures_completed_or_not_ready = true;
// process commands that were sent to us
let cmd = match self.commands.poll_recv(cx) {
Poll::Ready(None) => return Poll::Ready(()), // client has disconnected - shut down.
Poll::Ready(Some(cmd)) => {
all_futures_completed_or_not_ready = false;
Some(cmd)
}
_ => None,
};
if let Some(cmd) = cmd {
if let Err(e) = self.handle_command(cmd) {
error!("Error handling command: {}", e);
}
}
// Handle loading of a new track to play
if let PlayerState::Loading {
ref mut loader,
track_id,
start_playback,
play_request_id,
} = self.state
{
// The loader may be terminated if we are trying to load the same track
// as before, and that track failed to open before.
if !loader.as_mut().is_terminated() {
match loader.as_mut().poll(cx) {
Poll::Ready(Ok(loaded_track)) => {
self.start_playback(
track_id,
play_request_id,
loaded_track,
start_playback,
);
if let PlayerState::Loading { .. } = self.state {
error!("The state wasn't changed by start_playback()");
exit(1);
}
}
Poll::Ready(Err(e)) => {
error!(
"Skipping to next track, unable to load track <{:?}>: {:?}",
track_id, e
);
self.send_event(PlayerEvent::Unavailable {
track_id,
play_request_id,
})
}
Poll::Pending => (),
}
}
}
// handle pending preload requests.
if let PlayerPreload::Loading {
ref mut loader,
track_id,
} = self.preload
{
match loader.as_mut().poll(cx) {
Poll::Ready(Ok(loaded_track)) => {
self.send_event(PlayerEvent::Preloading { track_id });
self.preload = PlayerPreload::Ready {
track_id,
loaded_track: Box::new(loaded_track),
};
}
Poll::Ready(Err(_)) => {
debug!("Unable to preload {:?}", track_id);
self.preload = PlayerPreload::None;
// Let Spirc know that the track was unavailable.
if let PlayerState::Playing {
play_request_id, ..
}
| PlayerState::Paused {
play_request_id, ..
} = self.state
{
self.send_event(PlayerEvent::Unavailable {
track_id,
play_request_id,
});
}
}
Poll::Pending => (),
}
}
if self.state.is_playing() {
self.ensure_sink_running();
if let PlayerState::Playing {
track_id,
play_request_id,
ref mut decoder,
normalisation_factor,
ref mut stream_position_ms,
ref mut reported_nominal_start_time,
duration_ms,
..
} = self.state
{
match decoder.next_packet() {
Ok(result) => {
if let Some((ref packet_position, ref packet)) = result {
let new_stream_position_ms = packet_position.position_ms;
let expected_position_ms = std::mem::replace(
&mut *stream_position_ms,
new_stream_position_ms,
);
if !passthrough {
match packet.samples() {
Ok(_) => {
let new_stream_position = Duration::from_millis(
new_stream_position_ms as u64,
);
let now = Instant::now();
// Only notify if we're skipped some packets *or* we are behind.
// If we're ahead it's probably due to a buffer of the backend
// and we're actually in time.
let notify_about_position =
match *reported_nominal_start_time {
None => true,
Some(reported_nominal_start_time) => {
let mut notify = false;
if packet_position.skipped {
if let Some(ahead) = new_stream_position
.checked_sub(Duration::from_millis(
expected_position_ms as u64,
))
{
notify |=
ahead >= Duration::from_secs(1)
}
}
if let Some(lag) = now
.checked_duration_since(
reported_nominal_start_time,
)
{
if let Some(lag) =
lag.checked_sub(new_stream_position)
{
notify |=
lag >= Duration::from_secs(1)
}
}
notify
}
};
if notify_about_position {
*reported_nominal_start_time =
now.checked_sub(new_stream_position);
self.send_event(PlayerEvent::Playing {
track_id,
play_request_id,
position_ms: new_stream_position_ms as u32,
duration_ms,
});
}
}
Err(e) => {
error!("Skipping to next track, unable to decode samples for track <{:?}>: {:?}", track_id, e);
self.send_event(PlayerEvent::EndOfTrack {
track_id,
play_request_id,
})
}
}
}
}
self.handle_packet(result, normalisation_factor);
}
Err(e) => {
error!("Skipping to next track, unable to get next packet for track <{:?}>: {:?}", track_id, e);
self.send_event(PlayerEvent::EndOfTrack {
track_id,
play_request_id,
})
}
}
} else {
error!("PlayerInternal poll: Invalid PlayerState");
exit(1);
};
}
if let PlayerState::Playing {
track_id,
play_request_id,
duration_ms,
stream_position_ms,
ref mut stream_loader_controller,
ref mut suggested_to_preload_next_track,
..
}
| PlayerState::Paused {
track_id,
play_request_id,
duration_ms,
stream_position_ms,
ref mut stream_loader_controller,
ref mut suggested_to_preload_next_track,
..
} = self.state
{
if (!*suggested_to_preload_next_track)
&& ((duration_ms as i64 - stream_position_ms as i64)
< PRELOAD_NEXT_TRACK_BEFORE_END_DURATION_MS as i64)
&& stream_loader_controller.range_to_end_available()
{
*suggested_to_preload_next_track = true;
self.send_event(PlayerEvent::TimeToPreloadNextTrack {
track_id,
play_request_id,
});
}
}
if self.session.is_invalid() {
return Poll::Ready(());
}
if (!self.state.is_playing()) && all_futures_completed_or_not_ready {
return Poll::Pending;
}
}
}
}
impl PlayerInternal {
fn ensure_sink_running(&mut self) {
if self.sink_status != SinkStatus::Running {
trace!("== Starting sink ==");
if let Some(callback) = &mut self.sink_event_callback {
callback(SinkStatus::Running);
}
match self.sink.start() {
Ok(()) => self.sink_status = SinkStatus::Running,
Err(e) => {
error!("{}", e);
exit(1);
}
}
}
}
fn ensure_sink_stopped(&mut self, temporarily: bool) {
match self.sink_status {
SinkStatus::Running => {
trace!("== Stopping sink ==");
match self.sink.stop() {
Ok(()) => {
self.sink_status = if temporarily {
SinkStatus::TemporarilyClosed
} else {
SinkStatus::Closed
};
if let Some(callback) = &mut self.sink_event_callback {
callback(self.sink_status);
}
}
Err(e) => {
error!("{}", e);
exit(1);
}
}
}
SinkStatus::TemporarilyClosed => {
if !temporarily {
self.sink_status = SinkStatus::Closed;
if let Some(callback) = &mut self.sink_event_callback {
callback(SinkStatus::Closed);
}
}
}
SinkStatus::Closed => (),
}
}
fn handle_player_stop(&mut self) {
match self.state {
PlayerState::Playing {
track_id,
play_request_id,
..
}
| PlayerState::Paused {
track_id,
play_request_id,
..
}
| PlayerState::EndOfTrack {
track_id,
play_request_id,
..
}
| PlayerState::Loading {
track_id,
play_request_id,
..
} => {
self.ensure_sink_stopped(false);
self.send_event(PlayerEvent::Stopped {
track_id,
play_request_id,
});
self.state = PlayerState::Stopped;
}
PlayerState::Stopped => (),
PlayerState::Invalid => {
error!("PlayerInternal::handle_player_stop in invalid state");
exit(1);
}
}
}
fn handle_play(&mut self) {
if let PlayerState::Paused {
track_id,
play_request_id,
stream_position_ms,
duration_ms,
..
} = self.state
{
self.state.paused_to_playing();
self.send_event(PlayerEvent::Playing {
track_id,
play_request_id,
position_ms: stream_position_ms,
duration_ms,
});
self.ensure_sink_running();
} else {
error!("Player::play called from invalid state: {:?}", self.state);
}
}
fn handle_pause(&mut self) {
if let PlayerState::Playing {
track_id,
play_request_id,
stream_position_ms,
duration_ms,
..
} = self.state
{
self.state.playing_to_paused();
self.ensure_sink_stopped(false);
self.send_event(PlayerEvent::Paused {
track_id,
play_request_id,
position_ms: stream_position_ms,
duration_ms,
});
} else {
error!("Player::pause called from invalid state: {:?}", self.state);
}
}
fn handle_packet(
&mut self,
packet: Option<(AudioPacketPosition, AudioPacket)>,
normalisation_factor: f64,
) {
match packet {
Some((_, mut packet)) => {
if !packet.is_empty() {
if let AudioPacket::Samples(ref mut data) = packet {
// Get the volume for the packet.
// In the case of hardware volume control this will
// always be 1.0 (no change).
let volume = self.volume_getter.attenuation_factor();
// For the basic normalisation method, a normalisation factor of 1.0 indicates that
// there is nothing to normalise (all samples should pass unaltered). For the
// dynamic method, there may still be peaks that we want to shave off.
// No matter the case we apply volume attenuation last if there is any.
if !self.config.normalisation && volume < 1.0 {
for sample in data.iter_mut() {
*sample *= volume;
}
} else if self.config.normalisation_method == NormalisationMethod::Basic
&& (normalisation_factor < 1.0 || volume < 1.0)
{
for sample in data.iter_mut() {
*sample *= normalisation_factor * volume;
}
} else if self.config.normalisation_method == NormalisationMethod::Dynamic {
// zero-cost shorthands
let threshold_db = self.config.normalisation_threshold_dbfs;
let knee_db = self.config.normalisation_knee_db;
let attack_cf = self.config.normalisation_attack_cf;
let release_cf = self.config.normalisation_release_cf;
for sample in data.iter_mut() {
*sample *= normalisation_factor;
// Feedforward limiter in the log domain
// After: Giannoulis, D., Massberg, M., & Reiss, J.D. (2012). Digital Dynamic
// Range Compressor Design—A Tutorial and Analysis. Journal of The Audio
// Engineering Society, 60, 399-408.
// Some tracks have samples that are precisely 0.0. That's silence
// and we know we don't need to limit that, in which we can spare
// the CPU cycles.
//
// Also, calling `ratio_to_db(0.0)` returns `inf` and would get the
// peak detector stuck. Also catch the unlikely case where a sample
// is decoded as `NaN` or some other non-normal value.
let limiter_db = if sample.is_normal() {
// step 1-4: half-wave rectification and conversion into dB
// and gain computer with soft knee and subtractor
let bias_db = ratio_to_db(sample.abs()) - threshold_db;
let knee_boundary_db = bias_db * 2.0;
if knee_boundary_db < -knee_db {
0.0
} else if knee_boundary_db.abs() <= knee_db {
// The textbook equation:
// ratio_to_db(sample.abs()) - (ratio_to_db(sample.abs()) - (bias_db + knee_db / 2.0).powi(2) / (2.0 * knee_db))
// Simplifies to:
// ((2.0 * bias_db) + knee_db).powi(2) / (8.0 * knee_db)
// Which in our case further simplifies to:
// (knee_boundary_db + knee_db).powi(2) / (8.0 * knee_db)
// because knee_boundary_db is 2.0 * bias_db.
(knee_boundary_db + knee_db).powi(2) / (8.0 * knee_db)
} else {
// Textbook:
// ratio_to_db(sample.abs()) - threshold_db, which is already our bias_db.
bias_db
}
} else {
0.0
};
// Spare the CPU unless (1) the limiter is engaged, (2) we
// were in attack or (3) we were in release, and that attack/
// release wasn't finished yet.
if limiter_db > 0.0
|| self.normalisation_integrator > 0.0
|| self.normalisation_peak > 0.0
{
// step 5: smooth, decoupled peak detector
// Textbook:
// release_cf * self.normalisation_integrator + (1.0 - release_cf) * limiter_db
// Simplifies to:
// release_cf * self.normalisation_integrator - release_cf * limiter_db + limiter_db
self.normalisation_integrator = f64::max(
limiter_db,
release_cf * self.normalisation_integrator
- release_cf * limiter_db
+ limiter_db,
);
// Textbook:
// attack_cf * self.normalisation_peak + (1.0 - attack_cf) * self.normalisation_integrator
// Simplifies to:
// attack_cf * self.normalisation_peak - attack_cf * self.normalisation_integrator + self.normalisation_integrator
self.normalisation_peak = attack_cf * self.normalisation_peak
- attack_cf * self.normalisation_integrator
+ self.normalisation_integrator;
// step 6: make-up gain applied later (volume attenuation)
// Applying the standard normalisation factor here won't work,
// because there are tracks with peaks as high as 6 dB above
// the default threshold, so that would clip.
// steps 7-8: conversion into level and multiplication into gain stage
*sample *= db_to_ratio(-self.normalisation_peak);
}
*sample *= volume;
}
}
}
if let Err(e) = self.sink.write(packet, &mut self.converter) {
error!("{}", e);
exit(1);
}
}
}
None => {
self.state.playing_to_end_of_track();
if let PlayerState::EndOfTrack {
track_id,
play_request_id,
..
} = self.state
{
self.send_event(PlayerEvent::EndOfTrack {
track_id,
play_request_id,
})
} else {
error!("PlayerInternal handle_packet: Invalid PlayerState");
exit(1);
}
}
}
}
fn start_playback(
&mut self,
track_id: SpotifyId,
play_request_id: u64,
loaded_track: PlayerLoadedTrackData,
start_playback: bool,
) {
let position_ms = loaded_track.stream_position_ms;
let mut config = self.config.clone();
if config.normalisation_type == NormalisationType::Auto {
if self.auto_normalise_as_album {
config.normalisation_type = NormalisationType::Album;
} else {
config.normalisation_type = NormalisationType::Track;
}
};
let normalisation_factor =
NormalisationData::get_factor(&config, loaded_track.normalisation_data);
if start_playback {
self.ensure_sink_running();
self.send_event(PlayerEvent::Playing {
track_id,
play_request_id,
position_ms,
duration_ms: loaded_track.duration_ms,
});
self.state = PlayerState::Playing {
track_id,
play_request_id,
decoder: loaded_track.decoder,
normalisation_data: loaded_track.normalisation_data,
normalisation_factor,
stream_loader_controller: loaded_track.stream_loader_controller,
duration_ms: loaded_track.duration_ms,
bytes_per_second: loaded_track.bytes_per_second,
stream_position_ms: loaded_track.stream_position_ms,
reported_nominal_start_time: Instant::now()
.checked_sub(Duration::from_millis(position_ms as u64)),
suggested_to_preload_next_track: false,
is_explicit: loaded_track.is_explicit,
};
} else {
self.ensure_sink_stopped(false);
self.state = PlayerState::Paused {
track_id,
play_request_id,
decoder: loaded_track.decoder,
normalisation_data: loaded_track.normalisation_data,
normalisation_factor,
stream_loader_controller: loaded_track.stream_loader_controller,
duration_ms: loaded_track.duration_ms,
bytes_per_second: loaded_track.bytes_per_second,
stream_position_ms: loaded_track.stream_position_ms,
suggested_to_preload_next_track: false,
is_explicit: loaded_track.is_explicit,
};
self.send_event(PlayerEvent::Paused {
track_id,
play_request_id,
position_ms,
duration_ms: loaded_track.duration_ms,
});
}
}
fn handle_command_load(
&mut self,
track_id: SpotifyId,
play_request_id: u64,
play: bool,
position_ms: u32,
) -> PlayerResult {
if !self.config.gapless {
self.ensure_sink_stopped(play);
}
// emit the correct player event
match self.state {
PlayerState::Playing {
track_id: old_track_id,
..
}
| PlayerState::Paused {
track_id: old_track_id,
..
}
| PlayerState::EndOfTrack {
track_id: old_track_id,
..
}
| PlayerState::Loading {
track_id: old_track_id,
..
} => self.send_event(PlayerEvent::Changed {
old_track_id,
new_track_id: track_id,
}),
PlayerState::Stopped => self.send_event(PlayerEvent::Started {
track_id,
play_request_id,
position_ms,
}),
PlayerState::Invalid { .. } => {
return Err(Error::internal(format!(
"Player::handle_command_load called from invalid state: {:?}",
self.state
)));
}
}
// Now we check at different positions whether we already have a pre-loaded version
// of this track somewhere. If so, use it and return.
// Check if there's a matching loaded track in the EndOfTrack player state.
// This is the case if we're repeating the same track again.
if let PlayerState::EndOfTrack {
track_id: previous_track_id,
..
} = self.state
{
if previous_track_id == track_id {
let mut loaded_track = match mem::replace(&mut self.state, PlayerState::Invalid) {
PlayerState::EndOfTrack { loaded_track, .. } => loaded_track,
_ => {
return Err(Error::internal(format!("PlayerInternal::handle_command_load repeating the same track: invalid state: {:?}", self.state)));
}
};
if position_ms != loaded_track.stream_position_ms {
// This may be blocking.
loaded_track.stream_position_ms = loaded_track.decoder.seek(position_ms)?;
}
self.preload = PlayerPreload::None;
self.start_playback(track_id, play_request_id, loaded_track, play);
if let PlayerState::Invalid = self.state {
return Err(Error::internal(format!("PlayerInternal::handle_command_load repeating the same track: start_playback() did not transition to valid player state: {:?}", self.state)));
}
return Ok(());
}
}
// Check if we are already playing the track. If so, just do a seek and update our info.
if let PlayerState::Playing {
track_id: current_track_id,
ref mut stream_position_ms,
ref mut decoder,
..
}
| PlayerState::Paused {
track_id: current_track_id,
ref mut stream_position_ms,
ref mut decoder,
..
} = self.state
{
if current_track_id == track_id {
// we can use the current decoder. Ensure it's at the correct position.
if position_ms != *stream_position_ms {
// This may be blocking.
*stream_position_ms = decoder.seek(position_ms)?;
}
// Move the info from the current state into a PlayerLoadedTrackData so we can use
// the usual code path to start playback.
let old_state = mem::replace(&mut self.state, PlayerState::Invalid);
if let PlayerState::Playing {
stream_position_ms,
decoder,
stream_loader_controller,
bytes_per_second,
duration_ms,
normalisation_data,
is_explicit,
..
}
| PlayerState::Paused {
stream_position_ms,
decoder,
stream_loader_controller,
bytes_per_second,
duration_ms,
normalisation_data,
is_explicit,
..
} = old_state
{
let loaded_track = PlayerLoadedTrackData {
decoder,
normalisation_data,
stream_loader_controller,
bytes_per_second,
duration_ms,
stream_position_ms,
is_explicit,
};
self.preload = PlayerPreload::None;
self.start_playback(track_id, play_request_id, loaded_track, play);
if let PlayerState::Invalid = self.state {
return Err(Error::internal(format!("PlayerInternal::handle_command_load already playing this track: start_playback() did not transition to valid player state: {:?}", self.state)));
}
return Ok(());
} else {
return Err(Error::internal(format!("PlayerInternal::handle_command_load already playing this track: invalid state: {:?}", self.state)));
}
}
}
// Check if the requested track has been preloaded already. If so use the preloaded data.
if let PlayerPreload::Ready {
track_id: loaded_track_id,
..
} = self.preload
{
if track_id == loaded_track_id {
let preload = std::mem::replace(&mut self.preload, PlayerPreload::None);
if let PlayerPreload::Ready {
track_id,
mut loaded_track,
} = preload
{
if position_ms != loaded_track.stream_position_ms {
// This may be blocking
loaded_track.stream_position_ms = loaded_track.decoder.seek(position_ms)?;
}
self.start_playback(track_id, play_request_id, *loaded_track, play);
return Ok(());
} else {
return Err(Error::internal(format!("PlayerInternal::handle_command_loading preloaded track: invalid state: {:?}", self.state)));
}
}
}
// We need to load the track - either from scratch or by completing a preload.
// In any case we go into a Loading state to load the track.
self.ensure_sink_stopped(play);
self.send_event(PlayerEvent::Loading {
track_id,
play_request_id,
position_ms,
});
// Try to extract a pending loader from the preloading mechanism
let loader = if let PlayerPreload::Loading {
track_id: loaded_track_id,
..
} = self.preload
{
if (track_id == loaded_track_id) && (position_ms == 0) {
let mut preload = PlayerPreload::None;
std::mem::swap(&mut preload, &mut self.preload);
if let PlayerPreload::Loading { loader, .. } = preload {
Some(loader)
} else {
None
}
} else {
None
}
} else {
None
};
self.preload = PlayerPreload::None;
// If we don't have a loader yet, create one from scratch.
let loader = loader.unwrap_or_else(|| Box::pin(self.load_track(track_id, position_ms)));
// Set ourselves to a loading state.
self.state = PlayerState::Loading {
track_id,
play_request_id,
start_playback: play,
loader,
};
Ok(())
}
fn handle_command_preload(&mut self, track_id: SpotifyId) {
debug!("Preloading track");
let mut preload_track = true;
// check whether the track is already loaded somewhere or being loaded.
if let PlayerPreload::Loading {
track_id: currently_loading,
..
}
| PlayerPreload::Ready {
track_id: currently_loading,
..
} = self.preload
{
if currently_loading == track_id {
// we're already preloading the requested track.
preload_track = false;
} else {
// we're preloading something else - cancel it.
self.preload = PlayerPreload::None;
}
}
if let PlayerState::Playing {
track_id: current_track_id,
..
}
| PlayerState::Paused {
track_id: current_track_id,
..
}
| PlayerState::EndOfTrack {
track_id: current_track_id,
..
} = self.state
{
if current_track_id == track_id {
// we already have the requested track loaded.
preload_track = false;
}
}
// schedule the preload of the current track if desired.
if preload_track {
let loader = self.load_track(track_id, 0);
self.preload = PlayerPreload::Loading {
track_id,
loader: Box::pin(loader),
}
}
}
fn handle_command_seek(&mut self, position_ms: u32) -> PlayerResult {
if let Some(decoder) = self.state.decoder() {
match decoder.seek(position_ms) {
Ok(new_position_ms) => {
if let PlayerState::Playing {
ref mut stream_position_ms,
..
}
| PlayerState::Paused {
ref mut stream_position_ms,
..
} = self.state
{
*stream_position_ms = new_position_ms;
}
}
Err(e) => error!("PlayerInternal::handle_command_seek error: {}", e),
}
} else {
error!("Player::seek called from invalid state: {:?}", self.state);
}
// ensure we have a bit of a buffer of downloaded data
self.preload_data_before_playback()?;
if let PlayerState::Playing {
track_id,
play_request_id,
ref mut reported_nominal_start_time,
duration_ms,
..
} = self.state
{
*reported_nominal_start_time =
Instant::now().checked_sub(Duration::from_millis(position_ms as u64));
self.send_event(PlayerEvent::Playing {
track_id,
play_request_id,
position_ms,
duration_ms,
});
}
if let PlayerState::Paused {
track_id,
play_request_id,
duration_ms,
..
} = self.state
{
self.send_event(PlayerEvent::Paused {
track_id,
play_request_id,
position_ms,
duration_ms,
});
}
Ok(())
}
fn handle_command(&mut self, cmd: PlayerCommand) -> PlayerResult {
debug!("command={:?}", cmd);
match cmd {
PlayerCommand::Load {
track_id,
play_request_id,
play,
position_ms,
} => self.handle_command_load(track_id, play_request_id, play, position_ms)?,
PlayerCommand::Preload { track_id } => self.handle_command_preload(track_id),
PlayerCommand::Seek(position_ms) => self.handle_command_seek(position_ms)?,
PlayerCommand::Play => self.handle_play(),
PlayerCommand::Pause => self.handle_pause(),
PlayerCommand::Stop => self.handle_player_stop(),
PlayerCommand::AddEventSender(sender) => self.event_senders.push(sender),
PlayerCommand::SetSinkEventCallback(callback) => self.sink_event_callback = callback,
PlayerCommand::EmitVolumeSetEvent(volume) => {
self.send_event(PlayerEvent::VolumeSet { volume })
}
PlayerCommand::SetAutoNormaliseAsAlbum(setting) => {
self.auto_normalise_as_album = setting
}
PlayerCommand::SkipExplicitContent() => {
if let PlayerState::Playing {
track_id,
play_request_id,
is_explicit,
..
}
| PlayerState::Paused {
track_id,
play_request_id,
is_explicit,
..
} = self.state
{
if is_explicit {
warn!("Currently loaded track is explicit, which client setting forbids -- skipping to next track.");
self.send_event(PlayerEvent::EndOfTrack {
track_id,
play_request_id,
})
}
}
}
};
Ok(())
}
fn send_event(&mut self, event: PlayerEvent) {
self.event_senders
.retain(|sender| sender.send(event.clone()).is_ok());
}
fn load_track(
&mut self,
spotify_id: SpotifyId,
position_ms: u32,
) -> impl FusedFuture<Output = Result<PlayerLoadedTrackData, ()>> + Send + 'static {
// This method creates a future that returns the loaded stream and associated info.
// Ideally all work should be done using asynchronous code. However, seek() on the
// audio stream is implemented in a blocking fashion. Thus, we can't turn it into future
// easily. Instead we spawn a thread to do the work and return a one-shot channel as the
// future to work with.
let loader = PlayerTrackLoader {
session: self.session.clone(),
config: self.config.clone(),
};
let (result_tx, result_rx) = oneshot::channel();
let load_handles_clone = self.load_handles.clone();
let handle = tokio::runtime::Handle::current();
let load_handle = thread::spawn(move || {
let data = handle.block_on(loader.load_track(spotify_id, position_ms));
if let Some(data) = data {
let _ = result_tx.send(data);
}
let mut load_handles = load_handles_clone.lock();
load_handles.remove(&thread::current().id());
});
let mut load_handles = self.load_handles.lock();
load_handles.insert(load_handle.thread().id(), load_handle);
result_rx.map_err(|_| ())
}
fn preload_data_before_playback(&mut self) -> PlayerResult {
if let PlayerState::Playing {
bytes_per_second,
ref mut stream_loader_controller,
..
} = self.state
{
let ping_time = stream_loader_controller.ping_time().as_secs_f32();
// Request our read ahead range
let request_data_length = max(
(READ_AHEAD_DURING_PLAYBACK_ROUNDTRIPS * ping_time * bytes_per_second as f32)
as usize,
(READ_AHEAD_DURING_PLAYBACK.as_secs_f32() * bytes_per_second as f32) as usize,
);
// Request the part we want to wait for blocking. This effectively means we wait for the previous request to partially complete.
let wait_for_data_length = max(
(READ_AHEAD_BEFORE_PLAYBACK_ROUNDTRIPS * ping_time * bytes_per_second as f32)
as usize,
(READ_AHEAD_BEFORE_PLAYBACK.as_secs_f32() * bytes_per_second as f32) as usize,
);
stream_loader_controller
.fetch_next_and_wait(request_data_length, wait_for_data_length)
.map_err(Into::into)
} else {
Ok(())
}
}
}
impl Drop for PlayerInternal {
fn drop(&mut self) {
debug!("drop PlayerInternal[{}]", self.player_id);
let handles: Vec<thread::JoinHandle<()>> = {
// waiting for the thread while holding the mutex would result in a deadlock
let mut load_handles = self.load_handles.lock();
load_handles
.drain()
.map(|(_thread_id, handle)| handle)
.collect()
};
for handle in handles {
let _ = handle.join();
}
}
}
impl fmt::Debug for PlayerCommand {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
PlayerCommand::Load {
track_id,
play,
position_ms,
..
} => f
.debug_tuple("Load")
.field(&track_id)
.field(&play)
.field(&position_ms)
.finish(),
PlayerCommand::Preload { track_id } => {
f.debug_tuple("Preload").field(&track_id).finish()
}
PlayerCommand::Play => f.debug_tuple("Play").finish(),
PlayerCommand::Pause => f.debug_tuple("Pause").finish(),
PlayerCommand::Stop => f.debug_tuple("Stop").finish(),
PlayerCommand::Seek(position) => f.debug_tuple("Seek").field(&position).finish(),
PlayerCommand::AddEventSender(_) => f.debug_tuple("AddEventSender").finish(),
PlayerCommand::SetSinkEventCallback(_) => {
f.debug_tuple("SetSinkEventCallback").finish()
}
PlayerCommand::EmitVolumeSetEvent(volume) => {
f.debug_tuple("VolumeSet").field(&volume).finish()
}
PlayerCommand::SetAutoNormaliseAsAlbum(setting) => f
.debug_tuple("SetAutoNormaliseAsAlbum")
.field(&setting)
.finish(),
PlayerCommand::SkipExplicitContent() => f.debug_tuple("SkipExplicitContent").finish(),
}
}
}
impl fmt::Debug for PlayerState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use PlayerState::*;
match *self {
Stopped => f.debug_struct("Stopped").finish(),
Loading {
track_id,
play_request_id,
..
} => f
.debug_struct("Loading")
.field("track_id", &track_id)
.field("play_request_id", &play_request_id)
.finish(),
Paused {
track_id,
play_request_id,
..
} => f
.debug_struct("Paused")
.field("track_id", &track_id)
.field("play_request_id", &play_request_id)
.finish(),
Playing {
track_id,
play_request_id,
..
} => f
.debug_struct("Playing")
.field("track_id", &track_id)
.field("play_request_id", &play_request_id)
.finish(),
EndOfTrack {
track_id,
play_request_id,
..
} => f
.debug_struct("EndOfTrack")
.field("track_id", &track_id)
.field("play_request_id", &play_request_id)
.finish(),
Invalid => f.debug_struct("Invalid").finish(),
}
}
}
struct Subfile<T: Read + Seek> {
stream: T,
offset: u64,
length: u64,
}
impl<T: Read + Seek> Subfile<T> {
pub fn new(mut stream: T, offset: u64, length: u64) -> Result<Subfile<T>, io::Error> {
let target = SeekFrom::Start(offset);
stream.seek(target)?;
Ok(Subfile {
stream,
offset,
length,
})
}
}
impl<T: Read + Seek> Read for Subfile<T> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.stream.read(buf)
}
}
impl<T: Read + Seek> Seek for Subfile<T> {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
let pos = match pos {
SeekFrom::Start(offset) => SeekFrom::Start(offset + self.offset),
SeekFrom::End(offset) => {
if (self.length as i64 - offset) < self.offset as i64 {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"newpos would be < self.offset",
));
}
pos
}
_ => pos,
};
let newpos = self.stream.seek(pos)?;
Ok(newpos - self.offset)
}
}
impl<R> MediaSource for Subfile<R>
where
R: Read + Seek + Send + Sync,
{
fn is_seekable(&self) -> bool {
true
}
fn byte_len(&self) -> Option<u64> {
Some(self.length)
}
}