librespot/playback/src/convert.rs
Guillaume Desmottes 7f2cb684c9 fix clippy warnings
2023-01-03 00:36:35 +01:00

115 lines
4 KiB
Rust

use crate::dither::{Ditherer, DithererBuilder};
use zerocopy::AsBytes;
#[derive(AsBytes, Copy, Clone, Debug)]
#[allow(non_camel_case_types)]
#[repr(transparent)]
pub struct i24([u8; 3]);
impl i24 {
fn from_s24(sample: i32) -> Self {
// trim the padding in the most significant byte
#[allow(unused_variables)]
let [a, b, c, d] = sample.to_ne_bytes();
#[cfg(target_endian = "little")]
return Self([a, b, c]);
#[cfg(target_endian = "big")]
return Self([b, c, d]);
}
}
pub struct Converter {
ditherer: Option<Box<dyn Ditherer>>,
}
impl Converter {
pub fn new(dither_config: Option<DithererBuilder>) -> Self {
match dither_config {
Some(ditherer_builder) => {
let ditherer = (ditherer_builder)();
info!("Converting with ditherer: {}", ditherer.name());
Self {
ditherer: Some(ditherer),
}
}
None => Self { ditherer: None },
}
}
/// To convert PCM samples from floating point normalized as `-1.0..=1.0`
/// to 32-bit signed integer, multiply by 2147483648 (0x80000000) and
/// saturate at the bounds of `i32`.
const SCALE_S32: f64 = 2147483648.;
/// To convert PCM samples from floating point normalized as `-1.0..=1.0`
/// to 24-bit signed integer, multiply by 8388608 (0x800000) and saturate
/// at the bounds of `i24`.
const SCALE_S24: f64 = 8388608.;
/// To convert PCM samples from floating point normalized as `-1.0..=1.0`
/// to 16-bit signed integer, multiply by 32768 (0x8000) and saturate at
/// the bounds of `i16`. When the samples were encoded using the same
/// scaling factor, like the reference Vorbis encoder does, this makes
/// conversions transparent.
const SCALE_S16: f64 = 32768.;
pub fn scale(&mut self, sample: f64, factor: f64) -> f64 {
// From the many float to int conversion methods available, match what
// the reference Vorbis implementation uses: sample * 32768 (for 16 bit)
// Casting float to integer rounds towards zero by default, i.e. it
// truncates, and that generates larger error than rounding to nearest.
match self.ditherer.as_mut() {
Some(d) => (sample * factor + d.noise()).round(),
None => (sample * factor).round(),
}
}
// Special case for samples packed in a word of greater bit depth (e.g.
// S24): clamp between min and max to ensure that the most significant
// byte is zero. Otherwise, dithering may cause an overflow. This is not
// necessary for other formats, because casting to integer will saturate
// to the bounds of the primitive.
pub fn clamping_scale(&mut self, sample: f64, factor: f64) -> f64 {
let int_value = self.scale(sample, factor);
// In two's complement, there are more negative than positive values.
let min = -factor;
let max = factor - 1.0;
int_value.clamp(min, max)
}
pub fn f64_to_f32(&mut self, samples: &[f64]) -> Vec<f32> {
samples.iter().map(|sample| *sample as f32).collect()
}
pub fn f64_to_s32(&mut self, samples: &[f64]) -> Vec<i32> {
samples
.iter()
.map(|sample| self.scale(*sample, Self::SCALE_S32) as i32)
.collect()
}
// S24 is 24-bit PCM packed in an upper 32-bit word
pub fn f64_to_s24(&mut self, samples: &[f64]) -> Vec<i32> {
samples
.iter()
.map(|sample| self.clamping_scale(*sample, Self::SCALE_S24) as i32)
.collect()
}
// S24_3 is 24-bit PCM in a 3-byte array
pub fn f64_to_s24_3(&mut self, samples: &[f64]) -> Vec<i24> {
samples
.iter()
.map(|sample| i24::from_s24(self.clamping_scale(*sample, Self::SCALE_S24) as i32))
.collect()
}
pub fn f64_to_s16(&mut self, samples: &[f64]) -> Vec<i16> {
samples
.iter()
.map(|sample| self.scale(*sample, Self::SCALE_S16) as i16)
.collect()
}
}