This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu,
which can be used to map memory at a desired address by games since
3.0.0.
It also properly parses SystemResourceSize from NPDM, and makes
information available via svcGetInfo.
This is needed for games like Super Smash Bros. and Diablo 3 -- this
PR's implementation does not run into the "ASCII reads" issue mentioned
in the comments of #2626, which was caused by the following bugs in
Yuzu's memory management that this PR also addresses:
* Yuzu's memory coalescing does not properly merge blocks. This results
in a polluted address space/svcQueryMemory results that would be
impossible to replicate on hardware, which can lead to game code making
the wrong assumptions about memory layout.
* This implements better merging for AllocatedMemoryBlocks.
* Yuzu's implementation of svcMirrorMemory unprotected the entire
virtual memory range containing the range being mirrored. This could
lead to games attempting to map data at that unprotected
range/attempting to access that range after yuzu improperly unmapped
it.
* This PR fixes it by simply calling ReprotectRange instead of
Reprotect.
Prior to execution within a process beginning, the process establishes
its own TLS region for uses (as far as I can tell) related to exception
handling.
Now that TLS creation was decoupled from threads themselves, we can add
this behavior to our Process class. This is also good, as it allows us
to remove a stub within svcGetInfo, namely querying the address of that
region.
Provides a more accurate name for the memory region and also
disambiguates between the map and new map regions of memory, making it
easier to understand.
Handles the placement of the stack a little nicer compared to the
previous code, which was off in a few ways. e.g.
The stack (new map) region, shouldn't be the width of the entire address
space if the size of the region calculation ends up being zero. It
should be placed at the same location as the TLS IO region and also have
the same size.
In the event the TLS IO region contains a size of zero, we should also
be doing the same thing. This fixes our memory layout a little bit and
also resolves some cases where assertions can trigger due to the memory
layout being incorrect.
Extracts out all of the thread local storage management from thread
instances themselves and makes the owning process handle the management
of the memory. This brings the memory management slightly more in line
with how the kernel handles these allocations.
Furthermore, this also makes the TLS page management a little more
readable compared to the lingering implementation that was carried over
from Citra.
This will be necessary for making our TLS slot management slightly more
straightforward. This can also be utilized for other purposes in the
future.
We can implement the existing simpler overload in terms of this one
anyways, we just pass the beginning and end of the ASLR region as the
boundaries.
The event should only be signaled when an output audio device gets changed. Example, Speaker to USB headset. We don't identify different devices internally yet so there's no need to signal the event yet.
StartLrAssignmentMode and StopLrAssignmentMode don't require any implementation as it's just used for showing the screen of changing the controller orientation if the user wishes to do so. Ever since #1634 this has not been needed as users can specify the controller orientation from the config and swap at any time. We store a private member just in case this gets used for anything extra in the future
InitializeApplicationInfoRestricted will need further implementation as it's checking for other user requirements about the game. As we're emulating, we're assuming the user owns the game so we skip these checks currently, implementation will need to be added further on
This PR attempts to implement the shared memory provided by GetSharedMemoryNativeHandle. There is still more work to be done however that requires a rehaul of the current time module to handle clock contexts. This PR is mainly to get the basic functionality of the SharedMemory working and allow the use of addition to it whilst things get improved on.
Things to note:
Memory Barriers are used in the SharedMemory and a better solution would need to be done to implement this. Currently in this PR I’m faking the memory barriers as everything is sync and single threaded. They work by incrementing the counter and just populate the two data slots. On data reading, it will read the last added data.
Specific values in the shared memory would need to be updated periodically. This isn't included in this PR since we don't actively do this yet. In a later PR when time is refactored this should be done.
Finally, as we don't handle clock contexts. When time is refactored, we will need to update the shared memory for specific contexts. This PR does this already however since the contexts are all identical and not separated. We're just updating the same values for each context which in this case is empty.
Tiime:SetStandardUserSystemClockAutomaticCorrectionEnabled, Time:IsStandardUserSystemClockAutomaticCorrectionEnabled are also partially implemented in this PR. The reason the implementation is partial is because once again, a lack of clock contexts. This will be improved on in a future PR.
This PR closes issue #2556
Even though it has been proven that IAudioRenderer:SystemEvent is
actually an automatic event. The current implementation of such event is
all thought to be manual. Thus it's implementation needs to be corrected
when doing such change. As it is right now this PR introduced a series
of regressions on softlocks on multiple games. Therefore, this pr
reverts such change until a correct implementation is made.
The old implementation had faulty Threadsafe methods where events could
be missing. This implementation unifies unsafe/safe methods and makes
core timing thread safe overall.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
This is performing more work than would otherwise be necessary during
VMManager's destruction. All we actually want to occur in this scenario
is for any allocated memory to be freed, which will happen automatically
as the VMManager instance goes out of scope.
Anything else being done is simply unnecessary work.