suyu/src/core/hle/kernel/scheduler.cpp

819 lines
30 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
//
// SelectThreads, Yield functions originally by TuxSH.
// licensed under GPLv2 or later under exception provided by the author.
#include <algorithm>
#include <mutex>
#include <set>
#include <unordered_set>
#include <utility>
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel {
GlobalScheduler::GlobalScheduler(KernelCore& kernel) : kernel{kernel} {}
GlobalScheduler::~GlobalScheduler() = default;
void GlobalScheduler::AddThread(std::shared_ptr<Thread> thread) {
std::scoped_lock lock{global_list_guard};
thread_list.push_back(std::move(thread));
}
void GlobalScheduler::RemoveThread(std::shared_ptr<Thread> thread) {
std::scoped_lock lock{global_list_guard};
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
}
u32 GlobalScheduler::SelectThreads() {
ASSERT(is_locked);
const auto update_thread = [](Thread* thread, Scheduler& sched) {
std::scoped_lock lock{sched.guard};
if (thread != sched.selected_thread_set.get()) {
if (thread == nullptr) {
++sched.idle_selection_count;
}
sched.selected_thread_set = SharedFrom(thread);
}
const bool reschedule_pending =
sched.is_context_switch_pending || (sched.selected_thread_set != sched.current_thread);
sched.is_context_switch_pending = reschedule_pending;
std::atomic_thread_fence(std::memory_order_seq_cst);
return reschedule_pending;
};
if (!is_reselection_pending.load()) {
return 0;
}
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> top_threads{};
u32 idle_cores{};
// Step 1: Get top thread in schedule queue.
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
Thread* top_thread =
scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
if (top_thread != nullptr) {
// TODO(Blinkhawk): Implement Thread Pinning
} else {
idle_cores |= (1U << core);
}
top_threads[core] = top_thread;
}
while (idle_cores != 0) {
u32 core_id = Common::CountTrailingZeroes32(idle_cores);
if (!suggested_queue[core_id].empty()) {
std::array<s32, Core::Hardware::NUM_CPU_CORES> migration_candidates{};
std::size_t num_candidates = 0;
auto iter = suggested_queue[core_id].begin();
Thread* suggested = nullptr;
// Step 2: Try selecting a suggested thread.
while (iter != suggested_queue[core_id].end()) {
suggested = *iter;
iter++;
s32 suggested_core_id = suggested->GetProcessorID();
Thread* top_thread =
suggested_core_id >= 0 ? top_threads[suggested_core_id] : nullptr;
if (top_thread != suggested) {
if (top_thread != nullptr &&
top_thread->GetPriority() < THREADPRIO_MAX_CORE_MIGRATION) {
suggested = nullptr;
break;
// There's a too high thread to do core migration, cancel
}
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), suggested);
break;
}
suggested = nullptr;
migration_candidates[num_candidates++] = suggested_core_id;
}
// Step 3: Select a suggested thread from another core
if (suggested == nullptr) {
for (std::size_t i = 0; i < num_candidates; i++) {
s32 candidate_core = migration_candidates[i];
suggested = top_threads[candidate_core];
auto it = scheduled_queue[candidate_core].begin();
it++;
Thread* next = it != scheduled_queue[candidate_core].end() ? *it : nullptr;
if (next != nullptr) {
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id),
suggested);
top_threads[candidate_core] = next;
break;
} else {
suggested = nullptr;
}
}
}
top_threads[core_id] = suggested;
}
idle_cores &= ~(1U << core_id);
}
u32 cores_needing_context_switch{};
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
Scheduler& sched = kernel.Scheduler(core);
ASSERT(top_threads[core] == nullptr ||
static_cast<u32>(top_threads[core]->GetProcessorID()) == core);
if (update_thread(top_threads[core], sched)) {
cores_needing_context_switch |= (1U << core);
}
}
return cores_needing_context_switch;
}
bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
ASSERT(is_locked);
// Note: caller should use critical section, etc.
if (!yielding_thread->IsRunnable()) {
// Normally this case shouldn't happen except for SetThreadActivity.
is_reselection_pending.store(true, std::memory_order_release);
return false;
}
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
const u32 priority = yielding_thread->GetPriority();
// Yield the thread
Reschedule(priority, core_id, yielding_thread);
const Thread* const winner = scheduled_queue[core_id].front();
if (kernel.GetCurrentHostThreadID() != core_id) {
is_reselection_pending.store(true, std::memory_order_release);
}
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
ASSERT(is_locked);
// Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
// etc.
if (!yielding_thread->IsRunnable()) {
// Normally this case shouldn't happen except for SetThreadActivity.
is_reselection_pending.store(true, std::memory_order_release);
return false;
}
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
const u32 priority = yielding_thread->GetPriority();
// Yield the thread
Reschedule(priority, core_id, yielding_thread);
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
for (std::size_t i = 0; i < current_threads.size(); i++) {
current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
}
Thread* next_thread = scheduled_queue[core_id].front(priority);
Thread* winner = nullptr;
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (source_core >= 0) {
if (current_threads[source_core] != nullptr) {
if (thread == current_threads[source_core] ||
current_threads[source_core]->GetPriority() < min_regular_priority) {
continue;
}
}
}
if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() ||
next_thread->GetPriority() < thread->GetPriority()) {
if (thread->GetPriority() <= priority) {
winner = thread;
break;
}
}
}
if (winner != nullptr) {
if (winner != yielding_thread) {
TransferToCore(winner->GetPriority(), s32(core_id), winner);
}
} else {
winner = next_thread;
}
if (kernel.GetCurrentHostThreadID() != core_id) {
is_reselection_pending.store(true, std::memory_order_release);
}
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread) {
ASSERT(is_locked);
// Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
// etc.
if (!yielding_thread->IsRunnable()) {
// Normally this case shouldn't happen except for SetThreadActivity.
is_reselection_pending.store(true, std::memory_order_release);
return false;
}
Thread* winner = nullptr;
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
// Remove the thread from its scheduled mlq, put it on the corresponding "suggested" one instead
TransferToCore(yielding_thread->GetPriority(), -1, yielding_thread);
// If the core is idle, perform load balancing, excluding the threads that have just used this
// function...
if (scheduled_queue[core_id].empty()) {
// Here, "current_threads" is calculated after the ""yield"", unlike yield -1
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
for (std::size_t i = 0; i < current_threads.size(); i++) {
current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
}
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (source_core < 0 || thread == current_threads[source_core]) {
continue;
}
if (current_threads[source_core] == nullptr ||
current_threads[source_core]->GetPriority() >= min_regular_priority) {
winner = thread;
}
break;
}
if (winner != nullptr) {
if (winner != yielding_thread) {
TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
}
} else {
winner = yielding_thread;
}
} else {
winner = scheduled_queue[core_id].front();
}
if (kernel.GetCurrentHostThreadID() != core_id) {
is_reselection_pending.store(true, std::memory_order_release);
}
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
void GlobalScheduler::PreemptThreads() {
ASSERT(is_locked);
for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
const u32 priority = preemption_priorities[core_id];
if (scheduled_queue[core_id].size(priority) > 0) {
if (scheduled_queue[core_id].size(priority) > 1) {
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
}
scheduled_queue[core_id].yield(priority);
if (scheduled_queue[core_id].size(priority) > 1) {
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
}
}
Thread* current_thread =
scheduled_queue[core_id].empty() ? nullptr : scheduled_queue[core_id].front();
Thread* winner = nullptr;
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (thread->GetPriority() != priority) {
continue;
}
if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty()
? nullptr
: scheduled_queue[source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break;
}
if (next_thread == thread) {
continue;
}
}
if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread;
break;
}
}
if (winner != nullptr) {
TransferToCore(winner->GetPriority(), s32(core_id), winner);
current_thread =
winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
}
if (current_thread != nullptr && current_thread->GetPriority() > priority) {
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (thread->GetPriority() < priority) {
continue;
}
if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty()
? nullptr
: scheduled_queue[source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break;
}
if (next_thread == thread) {
continue;
}
}
if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread;
break;
}
}
if (winner != nullptr) {
TransferToCore(winner->GetPriority(), s32(core_id), winner);
current_thread = winner;
}
}
is_reselection_pending.store(true, std::memory_order_release);
}
}
void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule,
Core::EmuThreadHandle global_thread) {
u32 current_core = global_thread.host_handle;
bool must_context_switch = global_thread.guest_handle != InvalidHandle &&
(current_core < Core::Hardware::NUM_CPU_CORES);
while (cores_pending_reschedule != 0) {
u32 core = Common::CountTrailingZeroes32(cores_pending_reschedule);
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
if (!must_context_switch || core != current_core) {
auto& phys_core = kernel.PhysicalCore(core);
phys_core.Interrupt();
} else {
must_context_switch = true;
}
cores_pending_reschedule &= ~(1U << core);
}
if (must_context_switch) {
auto& core_scheduler = kernel.CurrentScheduler();
kernel.ExitSVCProfile();
core_scheduler.TryDoContextSwitch();
kernel.EnterSVCProfile();
}
}
void GlobalScheduler::Suggest(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
suggested_queue[core].add(thread, priority);
}
void GlobalScheduler::Unsuggest(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
suggested_queue[core].remove(thread, priority);
}
void GlobalScheduler::Schedule(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
scheduled_queue[core].add(thread, priority);
}
void GlobalScheduler::SchedulePrepend(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
scheduled_queue[core].add(thread, priority, false);
}
void GlobalScheduler::Reschedule(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
scheduled_queue[core].remove(thread, priority);
scheduled_queue[core].add(thread, priority);
}
void GlobalScheduler::Unschedule(u32 priority, std::size_t core, Thread* thread) {
ASSERT(is_locked);
scheduled_queue[core].remove(thread, priority);
}
void GlobalScheduler::TransferToCore(u32 priority, s32 destination_core, Thread* thread) {
ASSERT(is_locked);
const bool schedulable = thread->GetPriority() < THREADPRIO_COUNT;
const s32 source_core = thread->GetProcessorID();
if (source_core == destination_core || !schedulable) {
return;
}
thread->SetProcessorID(destination_core);
if (source_core >= 0) {
Unschedule(priority, static_cast<u32>(source_core), thread);
}
if (destination_core >= 0) {
Unsuggest(priority, static_cast<u32>(destination_core), thread);
Schedule(priority, static_cast<u32>(destination_core), thread);
}
if (source_core >= 0) {
Suggest(priority, static_cast<u32>(source_core), thread);
}
}
bool GlobalScheduler::AskForReselectionOrMarkRedundant(Thread* current_thread,
const Thread* winner) {
if (current_thread == winner) {
current_thread->IncrementYieldCount();
return true;
} else {
is_reselection_pending.store(true, std::memory_order_release);
return false;
}
}
void GlobalScheduler::AdjustSchedulingOnStatus(Thread* thread, u32 old_flags) {
if (old_flags == thread->scheduling_state) {
return;
}
ASSERT(is_locked);
if (old_flags == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// In this case the thread was running, now it's pausing/exitting
if (thread->processor_id >= 0) {
Unschedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
}
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (core != static_cast<u32>(thread->processor_id) &&
((thread->affinity_mask >> core) & 1) != 0) {
Unsuggest(thread->current_priority, core, thread);
}
}
} else if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// The thread is now set to running from being stopped
if (thread->processor_id >= 0) {
Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
}
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (core != static_cast<u32>(thread->processor_id) &&
((thread->affinity_mask >> core) & 1) != 0) {
Suggest(thread->current_priority, core, thread);
}
}
}
SetReselectionPending();
}
void GlobalScheduler::AdjustSchedulingOnPriority(Thread* thread, u32 old_priority) {
if (thread->scheduling_state != static_cast<u32>(ThreadSchedStatus::Runnable)) {
return;
}
ASSERT(is_locked);
if (thread->processor_id >= 0) {
Unschedule(old_priority, static_cast<u32>(thread->processor_id), thread);
}
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (core != static_cast<u32>(thread->processor_id) &&
((thread->affinity_mask >> core) & 1) != 0) {
Unsuggest(old_priority, core, thread);
}
}
if (thread->processor_id >= 0) {
if (thread == kernel.CurrentScheduler().GetCurrentThread()) {
SchedulePrepend(thread->current_priority, static_cast<u32>(thread->processor_id),
thread);
} else {
Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
}
}
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (core != static_cast<u32>(thread->processor_id) &&
((thread->affinity_mask >> core) & 1) != 0) {
Suggest(thread->current_priority, core, thread);
}
}
thread->IncrementYieldCount();
SetReselectionPending();
}
void GlobalScheduler::AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask,
s32 old_core) {
if (thread->scheduling_state != static_cast<u32>(ThreadSchedStatus::Runnable) ||
thread->current_priority >= THREADPRIO_COUNT) {
return;
}
ASSERT(is_locked);
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (((old_affinity_mask >> core) & 1) != 0) {
if (core == static_cast<u32>(old_core)) {
Unschedule(thread->current_priority, core, thread);
} else {
Unsuggest(thread->current_priority, core, thread);
}
}
}
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
if (((thread->affinity_mask >> core) & 1) != 0) {
if (core == static_cast<u32>(thread->processor_id)) {
Schedule(thread->current_priority, core, thread);
} else {
Suggest(thread->current_priority, core, thread);
}
}
}
thread->IncrementYieldCount();
SetReselectionPending();
}
void GlobalScheduler::Shutdown() {
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
scheduled_queue[core].clear();
suggested_queue[core].clear();
}
thread_list.clear();
}
void GlobalScheduler::Lock() {
Core::EmuThreadHandle current_thread = kernel.GetCurrentEmuThreadID();
ASSERT(!current_thread.IsInvalid());
if (current_thread == current_owner) {
++scope_lock;
} else {
inner_lock.lock();
is_locked = true;
current_owner = current_thread;
ASSERT(current_owner != Core::EmuThreadHandle::InvalidHandle());
scope_lock = 1;
}
}
void GlobalScheduler::Unlock() {
if (--scope_lock != 0) {
ASSERT(scope_lock > 0);
return;
}
u32 cores_pending_reschedule = SelectThreads();
Core::EmuThreadHandle leaving_thread = current_owner;
current_owner = Core::EmuThreadHandle::InvalidHandle();
scope_lock = 1;
is_locked = false;
inner_lock.unlock();
EnableInterruptAndSchedule(cores_pending_reschedule, leaving_thread);
}
Scheduler::Scheduler(Core::System& system, std::size_t core_id) : system(system), core_id(core_id) {
switch_fiber = std::make_shared<Common::Fiber>(std::function<void(void*)>(OnSwitch), this);
}
Scheduler::~Scheduler() = default;
bool Scheduler::HaveReadyThreads() const {
return system.GlobalScheduler().HaveReadyThreads(core_id);
}
Thread* Scheduler::GetCurrentThread() const {
if (current_thread) {
return current_thread.get();
}
return idle_thread.get();
}
Thread* Scheduler::GetSelectedThread() const {
return selected_thread.get();
}
u64 Scheduler::GetLastContextSwitchTicks() const {
return last_context_switch_time;
}
void Scheduler::TryDoContextSwitch() {
auto& phys_core = system.Kernel().CurrentPhysicalCore();
if (phys_core.IsInterrupted()) {
phys_core.ClearInterrupt();
}
guard.lock();
if (is_context_switch_pending) {
SwitchContext();
} else {
guard.unlock();
}
}
void Scheduler::OnThreadStart() {
SwitchContextStep2();
}
void Scheduler::Unload(Thread* thread) {
if (thread) {
thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
thread->SetIsRunning(false);
if (thread->IsContinuousOnSVC() && !thread->IsHLEThread()) {
system.ArmInterface(core_id).ExceptionalExit();
thread->SetContinuousOnSVC(false);
}
if (!thread->IsHLEThread() && !thread->HasExited()) {
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
}
thread->context_guard.unlock();
}
}
void Scheduler::Unload() {
Unload(current_thread.get());
}
void Scheduler::Reload(Thread* thread) {
if (thread) {
ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
"Thread must be runnable.");
// Cancel any outstanding wakeup events for this thread
thread->SetIsRunning(true);
thread->SetWasRunning(false);
thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
auto* const thread_owner_process = thread->GetOwnerProcess();
if (thread_owner_process != nullptr) {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
if (!thread->IsHLEThread()) {
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(thread->GetTLSAddress());
cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
}
}
}
void Scheduler::Reload() {
Reload(current_thread.get());
}
void Scheduler::SwitchContextStep2() {
// Load context of new thread
Reload(selected_thread.get());
TryDoContextSwitch();
}
void Scheduler::SwitchContext() {
current_thread_prev = current_thread;
selected_thread = selected_thread_set;
Thread* previous_thread = current_thread_prev.get();
Thread* new_thread = selected_thread.get();
current_thread = selected_thread;
is_context_switch_pending = false;
if (new_thread == previous_thread) {
guard.unlock();
return;
}
Process* const previous_process = system.Kernel().CurrentProcess();
UpdateLastContextSwitchTime(previous_thread, previous_process);
// Save context for previous thread
Unload(previous_thread);
std::shared_ptr<Common::Fiber>* old_context;
if (previous_thread != nullptr) {
old_context = &previous_thread->GetHostContext();
} else {
old_context = &idle_thread->GetHostContext();
}
guard.unlock();
Common::Fiber::YieldTo(*old_context, switch_fiber);
/// When a thread wakes up, the scheduler may have changed to other in another core.
auto& next_scheduler = system.Kernel().CurrentScheduler();
next_scheduler.SwitchContextStep2();
}
void Scheduler::OnSwitch(void* this_scheduler) {
Scheduler* sched = static_cast<Scheduler*>(this_scheduler);
sched->SwitchToCurrent();
}
void Scheduler::SwitchToCurrent() {
while (true) {
{
std::scoped_lock lock{guard};
selected_thread = selected_thread_set;
current_thread = selected_thread;
is_context_switch_pending = false;
}
const auto is_switch_pending = [this] {
std::scoped_lock lock{guard};
return is_context_switch_pending;
};
do {
if (current_thread != nullptr && !current_thread->IsHLEThread()) {
current_thread->context_guard.lock();
if (!current_thread->IsRunnable()) {
current_thread->context_guard.unlock();
break;
}
if (static_cast<u32>(current_thread->GetProcessorID()) != core_id) {
current_thread->context_guard.unlock();
break;
}
}
std::shared_ptr<Common::Fiber>* next_context;
if (current_thread != nullptr) {
next_context = &current_thread->GetHostContext();
} else {
next_context = &idle_thread->GetHostContext();
}
Common::Fiber::YieldTo(switch_fiber, *next_context);
} while (!is_switch_pending());
}
}
void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
const u64 prev_switch_ticks = last_context_switch_time;
const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
if (thread != nullptr) {
thread->UpdateCPUTimeTicks(update_ticks);
}
if (process != nullptr) {
process->UpdateCPUTimeTicks(update_ticks);
}
last_context_switch_time = most_recent_switch_ticks;
}
void Scheduler::Initialize() {
std::string name = "Idle Thread Id:" + std::to_string(core_id);
std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc();
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
ThreadType type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE);
auto thread_res = Thread::Create(system, type, name, 0, 64, 0, static_cast<u32>(core_id), 0,
nullptr, std::move(init_func), init_func_parameter);
idle_thread = std::move(thread_res).Unwrap();
}
void Scheduler::Shutdown() {
current_thread = nullptr;
selected_thread = nullptr;
}
SchedulerLock::SchedulerLock(KernelCore& kernel) : kernel{kernel} {
kernel.GlobalScheduler().Lock();
}
SchedulerLock::~SchedulerLock() {
kernel.GlobalScheduler().Unlock();
}
SchedulerLockAndSleep::SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle,
Thread* time_task, s64 nanoseconds)
: SchedulerLock{kernel}, event_handle{event_handle}, time_task{time_task}, nanoseconds{
nanoseconds} {
event_handle = InvalidHandle;
}
SchedulerLockAndSleep::~SchedulerLockAndSleep() {
if (sleep_cancelled) {
return;
}
auto& time_manager = kernel.TimeManager();
time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
}
void SchedulerLockAndSleep::Release() {
if (sleep_cancelled) {
return;
}
auto& time_manager = kernel.TimeManager();
time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
sleep_cancelled = true;
}
} // namespace Kernel