VictoriaMetrics/docs/anomaly-detection/components/scheduler.md
Andrii Chubatiuk 35d77a3bed
docs: updated guides structure, removed deprecated sort option (#6767)
### Describe Your Changes

* `sort` param is unused by the current website engine, and was present only for compatibility
with previous website engine. It is time to remove it as it makes no effect
* re-structure guides content into folders to simplify assets management

### Checklist

The following checks are **mandatory**:

- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
2024-08-07 16:48:08 +02:00

14 KiB
Raw Permalink Blame History

title weight menu aliases
Scheduler 3
docs
parent weight
vmanomaly-components 3
/anomaly-detection/components/scheduler.html

Scheduler defines how often to run and make inferences, as well as what timerange to use to train the model. Is specified in scheduler section of a config for VictoriaMetrics Anomaly Detection.

Note: Starting from v1.11.0 scheduler section in config supports multiple schedulers via aliasing.
Also, vmanomaly expects scheduler section to be named schedulers. Using old (flat) format with scheduler key is deprecated and will be removed in future versions.

schedulers:
  scheduler_periodic_1m:
    # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support)
    infer_every: "1m"
    fit_every: "2m"
    fit_window: "3h"
  scheduler_periodic_5m:
    # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support)
    infer_every: "5m"
    fit_every: "10m"
    fit_window: "3h"
...

Old-style configs (< 1.11.0)

scheduler:
  # class: "periodic" # or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support)
  infer_every: "1m"
  fit_every: "2m"
  fit_window: "3h"
...

will be implicitly converted to

schedulers:
  default_scheduler:  # default scheduler alias added, for backward compatibility
    class: "scheduler.periodic.PeriodicScheduler"
    infer_every: "1m"
    fit_every: "2m"
    fit_window: "3h"
...

Parameters

class: str, default="scheduler.periodic.PeriodicScheduler", options={"scheduler.periodic.PeriodicScheduler", "scheduler.oneoff.OneoffScheduler", "scheduler.backtesting.BacktestingScheduler"}

  • "scheduler.periodic.PeriodicScheduler": periodically runs the models on new data. Useful for consecutive re-trainings to counter data drift and model degradation over time.
  • "scheduler.oneoff.OneoffScheduler": runs the process once and exits. Useful for testing.
  • "scheduler.backtesting.BacktestingScheduler": imitates consecutive backtesting runs of OneoffScheduler. Runs the process once and exits. Use to get more granular control over testing on historical data.

Note

: starting from v1.13.0, class aliases are supported, so "scheduler.periodic.PeriodicScheduler" can be substituted to "periodic", "scheduler.oneoff.OneoffScheduler" - to "oneoff", "scheduler.backtesting.BacktestingScheduler" - to "backtesting"

Depending on selected class, different parameters should be used

Periodic scheduler

Parameters

For periodic scheduler parameters are defined as differences in times, expressed in difference units, e.g. days, hours, minutes, seconds.

Examples: "50s", "4m", "3h", "2d", "1w".

Time granularity
s seconds
m minutes
h hours
d days
w weeks

Parameter Type Example Description

fit_window

str

"14d"

What time range to use for training the models. Must be at least 1 second.

infer_every

str

"1m"

How often a model will write its conclusions on newly added data. Must be at least 1 second.

fit_every

str, Optional

"1h"

How often to completely retrain the models. If missing value of infer_every is used and retrain on every inference run.

Periodic scheduler config example

schedulers:
  periodic_scheduler_alias:
    class: "periodic"
    # (or class: "scheduler.periodic.PeriodicScheduler" until v1.13.0 with class alias support)
    fit_window: "14d" 
    infer_every: "1m" 
    fit_every: "1h" 

This part of the config means that vmanomaly will calculate the time window of the previous 14 days and use it to train a model. Every hour model will be retrained again on 14 days data, which will include + 1 hour of new data. The time window is strictly the same 14 days and doesn't extend for the next retrains. Every minute vmanomaly will produce model inferences for newly added data points by using the model that is kept in memory at that time.

Oneoff scheduler

Parameters

For Oneoff scheduler timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are:

  • Z (UTC)
  • ±HH:MM
  • ±HHMM
  • ±HH

If a time zone is omitted, a timezone-naive datetime is used.

Defining fitting timeframe

Format Parameter Type Example Description
ISO 8601

fit_start_iso

str

"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"

Start datetime to use for training a model. ISO string or UNIX time in seconds.
UNIX time

fit_start_s

float 1648771200
ISO 8601

fit_end_iso

str

"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"

End datetime to use for training a model. Must be greater than

fit_start_* . ISO string or UNIX time in seconds.

UNIX time

fit_end_s

float 1649548800

Defining inference timeframe

Format Parameter Type Example Description
ISO 8601

infer_start_iso

str

"2022-04-11T00:00:00Z", "2022-04-11T00:00:00+01:00", "2022-04-11T00:00:00+0100", "2022-04-11T00:00:00+01"

Start datetime to use for a model inference. ISO string or UNIX time in seconds.
UNIX time

infer_start_s

float 1649635200
ISO 8601

infer_end_iso

str

"2022-04-14T00:00:00Z", "2022-04-14T00:00:00+01:00", "2022-04-14T00:00:00+0100", "2022-04-14T00:00:00+01"

End datetime to use for a model inference. Must be greater than

infer_start_* . ISO string or UNIX time in seconds.

UNIX time

infer_end_s

float 1649894400

ISO format scheduler config example

schedulers:
  oneoff_scheduler_alias:
    class: "oneoff"
    # (or class: "scheduler.oneoff.OneoffScheduler" until v1.13.0 with class alias support)
    fit_start_iso: "2022-04-01T00:00:00Z"
    fit_end_iso: "2022-04-10T00:00:00Z"
    infer_start_iso: "2022-04-11T00:00:00Z"
    infer_end_iso: "2022-04-14T00:00:00Z"

UNIX time format scheduler config example

schedulers:
  oneoff_scheduler_alias:
    class: "oneoff"
    # (or class: "scheduler.oneoff.OneoffScheduler" until v1.13.0 with class alias support)
    fit_start_s: 1648771200
    fit_end_s: 1649548800
    infer_start_s: 1649635200
    infer_end_s: 1649894400

Backtesting scheduler

Parameters

As for Oneoff scheduler, timeframes can be defined in Unix time in seconds or ISO 8601 string format. ISO format supported time zone offset formats are:

  • Z (UTC)
  • ±HH:MM
  • ±HHMM
  • ±HH

If a time zone is omitted, a timezone-naive datetime is used.

Parallelization

Parameter Type Example Description

n_jobs

int

1

Allows proportionally faster (yet more resource-intensive) evaluations of a config on historical data. Default value is 1, that implies sequential execution. Introduced in v1.13.0

Defining overall timeframe

This timeframe will be used for slicing on intervals (fit_window, infer_window == fit_every), starting from the latest available time point, which is to_* and going back, until no full fit_window + infer_window interval exists within the provided timeframe.

Format Parameter Type Example Description
ISO 8601

from_iso

str

"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"

Start datetime to use for backtesting.
UNIX time

from_s

float 1648771200
ISO 8601

to_iso

str

"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"

End datetime to use for backtesting. Must be greater than

from_start_*

UNIX time

to_s

float 1649548800

Defining training timeframe

The same explicit logic as in Periodic scheduler

Format Parameter Type Example Description
ISO 8601

fit_window

str

"PT1M", "P1H"

What time range to use for training the models. Must be at least 1 second.
Prometheus-compatible

"1m", "1h"

Defining inference timeframe

In BacktestingScheduler, the inference window is implicitly defined as a period between 2 consecutive model fit_every runs. The latest inference window starts from to_s - fit_every and ends on the latest available time point, which is to_s. The previous periods for fit/infer are defined the same way, by shifting fit_every seconds backwards until we get the last full fit period of fit_window size, which start is >= from_s.

Format Parameter Type Example Description
ISO 8601

fit_every

str

"PT1M", "P1H"

What time range to use previously trained model to infer on new data until next retrain happens.
Prometheus-compatible

"1m", "1h"

ISO format scheduler config example

schedulers:
  backtesting_scheduler_alias:
    class: "backtesting"
    # (or class: "scheduler.backtesting.BacktestingScheduler" until v1.13.0 with class alias support)
    from_iso: '2021-01-01T00:00:00Z'
    to_iso: '2021-01-14T00:00:00Z'
    fit_window: 'P14D'
    fit_every: 'PT1H'
    n_jobs: 1  # default = 1 (sequential), set it up to # of CPUs for parallel execution

UNIX time format scheduler config example

schedulers:
  backtesting_scheduler_alias:
    class: "backtesting"
    # (or class: "scheduler.backtesting.BacktestingScheduler" until v1.13.0 with class alias support)
    from_s: 167253120
    to_s: 167443200
    fit_window: '14d'
    fit_every: '1h'
    n_jobs: 1  # default = 1 (sequential), set it up to # of CPUs for parallel execution