VictoriaMetrics/docs/anomaly-detection/QuickStart.md
Fred Navruzov 0219d34b21
docs/vmanomaly - release 1.13.0 preparation (#6436)
### Describe Your Changes

[vmanomaly docs](https://docs.victoriametrics.com/anomaly-detection/)
update for changes, introduced in v1.13.0

### Checklist

The following checks are **mandatory**:

- [x] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).

(cherry picked from commit 1feb5d04d7)
2024-06-11 17:05:07 +02:00

119 lines
No EOL
4.5 KiB
Markdown

---
sort: 1
weight: 1
title: VictoriaMetrics Anomaly Detection Quick Start
menu:
docs:
parent: "anomaly-detection"
weight: 1
title: Quick Start
aliases:
- /anomaly-detection/QuickStart.html
---
# VictoriaMetrics Anomaly Detection Quick Start
For service introduction visit [README](/anomaly-detection/) page
and [Overview](/anomaly-detection/overview.html) of how `vmanomaly` works.
## How to install and run vmanomaly
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
The following options are available:
- [To run Docker image](#docker)
- [To run in Kubernetes with Helm charts](#kubernetes-with-helm-charts)
> **Note**: Starting from [v1.13.0](/anomaly-detection/changelog/#v1130) there is a mode to keep anomaly detection models on host filesystem after `fit` stage (instead of keeping them in-memory by default); This may lead to **noticeable reduction of RAM used** on bigger setups. See instructions [here](/anomaly-detection/faq/#resource-consumption-of-vmanomaly).
### Docker
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
Below are the steps to get `vmanomaly` up and running inside a Docker container:
1. Pull Docker image:
```sh
docker pull victoriametrics/vmanomaly:latest
```
2. (Optional step) tag the `vmanomaly` Docker image:
```sh
docker image tag victoriametrics/vmanomaly:latest vmanomaly
```
3. Start the `vmanomaly` Docker container with a *license file*, use the command below.
**Make sure to replace `YOUR_LICENSE_FILE_PATH`, and `YOUR_CONFIG_FILE_PATH` with your specific details**:
```sh
export YOUR_LICENSE_FILE_PATH=path/to/license/file
export YOUR_CONFIG_FILE_PATH=path/to/config/file
docker run -it -v $YOUR_LICENSE_FILE_PATH:/license \
-v $YOUR_CONFIG_FILE_PATH:/config.yml \
vmanomaly /config.yml \
--license-file=/license
```
See also:
- You can verify licence online and offline. See the details [here](/anomaly-detection/overview/#licensing).
- [How to configure `vmanomaly`](#how-to-configure-vmanomaly)
### Kubernetes with Helm charts
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
You can run `vmanomaly` in Kubernetes environment
with [these Helm charts](https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-anomaly/README.md).
## How to configure vmanomaly
To run `vmanomaly` you need to set up configuration file in `yaml` format.
Here is an example of config file that will run [Facebook Prophet](https://facebook.github.io/prophet/) model, that will be retrained every 2 hours on 14 days of previous data. It will generate inference (including `anomaly_score` metric) every 1 minute.
```yaml
scheduler:
infer_every: "1m"
fit_every: "2h"
fit_window: "14d"
models:
prophet_model:
class: "prophet" # or "model.prophet.ProphetModel" until v1.13.0
args:
interval_width: 0.98
reader:
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
sampling_period: "1m"
queries:
# define your queries with MetricsQL - https://docs.victoriametrics.com/metricsql/
cache: "sum(rate(vm_cache_entries))"
writer:
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
```
Next steps:
- Define how often to run and make inferences in the [scheduler](/anomaly-detection/components/scheduler/) section of a config file.
- Setup the datasource to read data from in the [reader](/anomaly-detection/components/reader/) section.
- Specify where and how to store anomaly detection metrics in the [writer](/anomaly-detection/components/writer/) section.
- Configure built-in models parameters according to your needs in the [models](/anomaly-detection/components/models/) section.
- Integrate your [custom models](/anomaly-detection/components/models/#custom-model-guide) with `vmanomaly`.
- Define queries for input data using [MetricsQL](https://docs.victoriametrics.com/metricsql/).
## Check also
Here are other materials that you might find useful:
- [Guide: Anomaly Detection and Alerting Setup](/anomaly-detection/guides/guide-vmanomaly-vmalert/)
- [FAQ](/anomaly-detection/faq/)
- [Changelog](/anomaly-detection/changelog/)
- [Anomaly Detection Blog](https://victoriametrics.com/blog/tags/anomaly-detection/)