mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-20 15:16:42 +00:00
133 lines
8.7 KiB
Markdown
133 lines
8.7 KiB
Markdown
---
|
|
weight: 6
|
|
title: FAQ
|
|
menu:
|
|
docs:
|
|
identifier: "victorialogs-faq"
|
|
parent: "victorialogs"
|
|
weight: 6
|
|
title: FAQ
|
|
aliases:
|
|
- /VictoriaLogs/FAQ.html
|
|
- /VictoriaLogs/faq.html
|
|
---
|
|
## What is the difference between VictoriaLogs and Elasticsearch (OpenSearch)?
|
|
|
|
Both Elasticsearch and VictoriaLogs allow ingesting structured and unstructured logs
|
|
and performing fast full-text search over the ingested logs.
|
|
|
|
Elasticsearch and OpenSearch are designed as general-purpose databases for fast full-text search over large set of documents.
|
|
They aren't optimized specifically for logs. This results in the following issues, which are resolved by VictoriaLogs:
|
|
|
|
- High RAM usage
|
|
- High disk space usage
|
|
- Non-trivial index setup
|
|
- Inability to select more than 10K matching log lines in a single query with default configs
|
|
|
|
VictoriaLogs is optimized specifically for logs. So it provides the following features useful for logs, which are missing in Elasticsearch:
|
|
|
|
- Easy to setup and operate. There is no need in tuning configuration for optimal performance or in creating any indexes for various log types.
|
|
Just run VictoriaLogs on the most suitable hardware, ingest logs into it via [supported data ingestion protocols](https://docs.victoriametrics.com/victorialogs/data-ingestion/)
|
|
and get the best available performance out of the box.
|
|
- Up to 30x less RAM usage than Elasticsearch for the same workload.
|
|
- Up to 15x less disk space usage than Elasticsearch for the same amounts of stored logs.
|
|
- Ability to work efficiently with hundreds of terabytes of logs on a single node.
|
|
- Easy to use query language optimized for typical log analysis tasks - [LogsQL](https://docs.victoriametrics.com/victorialogs/logsql/).
|
|
- Fast full-text search over all the [log fields](https://docs.victoriametrics.com/victorialogs/keyconcepts/#data-model) out of the box.
|
|
- Good integration with traditional command-line tools for log analysis. See [these docs](https://docs.victoriametrics.com/victorialogs/querying/#command-line).
|
|
|
|
|
|
## What is the difference between VictoriaLogs and Grafana Loki?
|
|
|
|
Both Grafana Loki and VictoriaLogs are designed for log management and processing.
|
|
Both systems support [log stream](https://docs.victoriametrics.com/victorialogs/keyconcepts/#stream-fields) concept.
|
|
|
|
VictoriaLogs and Grafana Loki have the following differences:
|
|
|
|
- VictoriaLogs is much easier to setup and operate than Grafana Loki. There is no need in non-trivial tuning -
|
|
it works great with default configuration.
|
|
|
|
- VictoriaLogs performs typical full-text search queries up to 1000x faster than Grafana Loki.
|
|
|
|
- Grafana Loki doesn't support log fields with many unique values (aka high cardinality labels) such as `user_id`, `trace_id` or `ip`.
|
|
It consumes huge amounts of RAM and slows down significantly when logs with high-cardinality fields are ingested into it.
|
|
See [these docs](https://grafana.com/docs/loki/latest/best-practices/) for details.
|
|
|
|
VictoriaLogs supports high-cardinality [log fields](https://docs.victoriametrics.com/victorialogs/keyconcepts/#data-model)
|
|
out of the box without any additional configuration. It automatically indexes all the ingested log fields,
|
|
so fast full-text search over any log field works without issues.
|
|
|
|
- Grafana Loki provides very inconvenient query language - [LogQL](https://grafana.com/docs/loki/latest/logql/).
|
|
This query language is hard to use for typical log analysis tasks.
|
|
|
|
VictoriaLogs provides easy to use query language for typical log analysis tasks - [LogsQL](https://docs.victoriametrics.com/victorialogs/logsql/).
|
|
|
|
- VictoriaLogs usually needs less RAM and storage space than Grafana Loki for the same amounts of logs.
|
|
|
|
|
|
## What is the difference between VictoriaLogs and ClickHouse?
|
|
|
|
ClickHouse is an extremely fast and efficient analytical database. It can be used for logs storage, analysis and processing.
|
|
VictoriaLogs is designed solely for logs. VictoriaLogs uses [similar design ideas as ClickHouse](#how-does-victorialogs-work) for achieving high performance.
|
|
|
|
- ClickHouse is good for logs if you know the set of [log fields](https://docs.victoriametrics.com/victorialogs/keyconcepts/#data-model)
|
|
and the expected query types beforehand. Then you can create a table with a column per each log field, and use the most optimal settings for the table -
|
|
sort order, partitioning and indexing - for achieving the maximum possible storage efficiency and query performance.
|
|
|
|
If the expected log fields or the expected query types aren't known beforehand, or if they may change over any time,
|
|
then ClickHouse can still be used, but its' efficiency may suffer significantly depending on how you design the database schema for log storage.
|
|
|
|
VictoriaLogs works optimally with any log types out of the box - structured, unstructured and mixed.
|
|
It works optimally with any sets of [log fields](https://docs.victoriametrics.com/victorialogs/keyconcepts/#data-model),
|
|
which can change in any way across different log sources.
|
|
|
|
- ClickHouse provides SQL dialect with additional analytical functionality. It allows performing arbitrary complex analytical queries
|
|
over the stored logs.
|
|
|
|
VictoriaLogs provides easy to use query language with full-text search specifically optimized
|
|
for log analysis - [LogsQL](https://docs.victoriametrics.com/victorialogs/logsql/).
|
|
LogsQL is usually easier to use than SQL for typical log analysis tasks, while some
|
|
non-trivial analytics may require SQL power.
|
|
|
|
- VictoriaLogs accepts logs from popular log shippers out of the box - see [these docs](https://docs.victoriametrics.com/victorialogs/data-ingestion/).
|
|
|
|
ClickHouse needs an intermediate applications for converting the ingested logs into `INSERT` SQL statements for the particular database schema.
|
|
This may increase the complexity of the system and, subsequently, increase its' maintenance costs.
|
|
|
|
|
|
## How does VictoriaLogs work?
|
|
|
|
VictoriaLogs accepts logs as [JSON entries](https://docs.victoriametrics.com/victorialogs/keyconcepts/#data-model).
|
|
Then it stores log fields into a distinct data block. E.g. values for the same log field across multiple log entries
|
|
are stored in a single data block. This allows reading data blocks only for the needed fields during querying.
|
|
|
|
Data blocks are compressed before being saved to persistent storage. This allows saving disk space and improving query performance
|
|
when it is limited by disk read IO bandwidth.
|
|
|
|
Smaller data blocks are merged into bigger blocks in background. Data blocks are limited in size. If the size of data block exceeds the limit,
|
|
then it is split into multiple blocks of smaller sizes.
|
|
|
|
Every data block is processed in an atomic manner during querying. For example, if the data block contains at least a single value,
|
|
which needs to be processed, then the whole data block is unpacked and read at once. Data blocks are processed in parallel
|
|
on all the available CPU cores during querying. This allows scaling query performance with the number of available CPU cores.
|
|
|
|
This architecture is inspired by [ClickHouse architecture](https://clickhouse.com/docs/en/development/architecture).
|
|
|
|
On top of this, VictoriaLogs employs additional optimizations for achieving high query performance:
|
|
|
|
- It uses [bloom filters](https://en.wikipedia.org/wiki/Bloom_filter) for skipping blocks without the given
|
|
[word](https://docs.victoriametrics.com/victorialogs/logsql/#word-filter) or [phrase](https://docs.victoriametrics.com/victorialogs/logsql/#phrase-filter).
|
|
- It uses custom encoding and compression for fields with different data types.
|
|
For example, it encodes IP addresses int 4 bytes. Custom fields' encoding reduces data size on disk and improves query performance.
|
|
- It physically groups logs for the same [log stream](https://docs.victoriametrics.com/victorialogs/keyconcepts/#stream-fields)
|
|
close to each other in the storage. This improves compression ratio, which helps reducing disk space usage. This also improves query performance
|
|
by skipping blocks for unneeded streams when [stream filter](https://docs.victoriametrics.com/victorialogs/logsql/#stream-filter) is used.
|
|
- It maintains sparse index for [log timestamps](https://docs.victoriametrics.com/victorialogs/keyconcepts/#time-field),
|
|
which allow improving query performance when [time filter](https://docs.victoriametrics.com/victorialogs/logsql/#time-filter) is used.
|
|
|
|
## How to export logs from VictoriaLogs?
|
|
|
|
Just send the query with the needed [filters](https://docs.victoriametrics.com/victorialogs/logsql/#filters)
|
|
to [`/select/logsql/query`](https://docs.victoriametrics.com/victorialogs/querying/#querying-logs) - VictoriaLogs will return
|
|
the requested logs as a [stream of JSON lines](https://jsonlines.org/). It is recommended specifying [time filter](https://docs.victoriametrics.com/victorialogs/logsql/#time-filter)
|
|
for limiting the amounts of exported logs.
|