VictoriaMetrics/docs/anomaly-detection/QuickStart.md
Andrii Chubatiuk 6b97044d8a
view documentation locally (#6677)
- moved files from root to VictoriaMetrics folder to be able to mount
operator docs and VictoriaMetrics docs independently
- added ability to run website locally

The following checks are **mandatory**:

- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
2024-07-25 12:27:05 +02:00

153 lines
5.4 KiB
Markdown

---
sort: 1
weight: 1
title: VictoriaMetrics Anomaly Detection Quick Start
menu:
docs:
parent: "anomaly-detection"
weight: 1
title: Quick Start
aliases:
- /anomaly-detection/QuickStart.html
---
For service introduction visit [README](./README.md) page
and [Overview](./Overview.md) of how `vmanomaly` works.
## How to install and run vmanomaly
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
The following options are available:
- [To run Docker image](#docker)
- [To run in Kubernetes with Helm charts](#kubernetes-with-helm-charts)
> **Note**: Starting from [v1.13.0](./CHANGELOG.md#v1130) there is a mode to keep anomaly detection models on host filesystem after `fit` stage (instead of keeping them in-memory by default); This may lead to **noticeable reduction of RAM used** on bigger setups. See instructions [here](./FAQ.md#resource-consumption-of-vmanomaly).
### Docker
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
Below are the steps to get `vmanomaly` up and running inside a Docker container:
1. Pull Docker image:
```sh
docker pull victoriametrics/vmanomaly:latest
```
2. (Optional step) tag the `vmanomaly` Docker image:
```sh
docker image tag victoriametrics/vmanomaly:latest vmanomaly
```
3. Start the `vmanomaly` Docker container with a *license file*, use the command below.
**Make sure to replace `YOUR_LICENSE_FILE_PATH`, and `YOUR_CONFIG_FILE_PATH` with your specific details**:
```sh
export YOUR_LICENSE_FILE_PATH=path/to/license/file
export YOUR_CONFIG_FILE_PATH=path/to/config/file
docker run -it -v $YOUR_LICENSE_FILE_PATH:/license \
-v $YOUR_CONFIG_FILE_PATH:/config.yml \
vmanomaly /config.yml \
--license-file=/license
```
In case you found `PermissionError: [Errno 13] Permission denied:` in `vmanomaly` logs, set user/user group to 1000 in the run command above / in a docker-compose file:
```sh
export YOUR_LICENSE_FILE_PATH=path/to/license/file
export YOUR_CONFIG_FILE_PATH=path/to/config/file
docker run -it --user 1000:1000 \
-v $YOUR_LICENSE_FILE_PATH:/license \
-v $YOUR_CONFIG_FILE_PATH:/config.yml \
vmanomaly /config.yml \
--license-file=/license
```
```yaml
# docker-compose file
services:
# ...
vmanomaly:
image: victoriametrics/vmanomaly:latest
volumes:
$YOUR_LICENSE_FILE_PATH:/license
$YOUR_CONFIG_FILE_PATH:/config.yml
command:
- "/config.yml"
- "--license-file=/license"
# ...
```
For a complete docker-compose example please refer to [our alerting guide](./guides/guide-vmanomaly-vmalert/README.md), chapter [docker-compose](./guides/guide-vmanomaly-vmalert/README.md#docker-compose)
See also:
- Verify the license online OR offline. See the details [here](./Overview.md#licensing).
- [How to configure `vmanomaly`](#how-to-configure-vmanomaly)
### Kubernetes with Helm charts
> To run `vmanomaly`, you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/).
You can run `vmanomaly` in Kubernetes environment
with [these Helm charts](https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-anomaly/README.md).
## How to configure vmanomaly
To run `vmanomaly` you need to set up configuration file in `yaml` format.
Here is an example of config file that will run [Facebook Prophet](https://facebook.github.io/prophet/) model, that will be retrained every 2 hours on 14 days of previous data. It will generate inference (including `anomaly_score` metric) every 1 minute.
```yaml
schedulers:
2h_1m:
# {{% ref "./components/scheduler.md#periodic-scheduler" %}}
class: 'periodic'
infer_every: '1m'
fit_every: '2h'
fit_window: '2w'
models:
# {{% ref "./components/models.md#prophet" %}}
prophet_model:
class: "prophet" # or "model.prophet.ProphetModel" until v1.13.0
args:
interval_width: 0.98
reader:
# {{% ref "./components/reader.md#vm-reader" %}}
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
sampling_period: "1m"
queries:
# define your queries with MetricsQL - {{% ref "../../MetricsQL.md" %}}
cache: "sum(rate(vm_cache_entries))"
writer:
# {{% ref "./components/writer.md#vm-writer" %}}
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
```
Next steps:
- Define how often to run and make inferences in the [scheduler](./components/scheduler.md) section of a config file.
- Setup the datasource to read data from in the [reader](./components/reader.md) section.
- Specify where and how to store anomaly detection metrics in the [writer](./components/writer.md) section.
- Configure built-in models parameters according to your needs in the [models](./components/models.md) section.
- Integrate your [custom models](./components/models.md#custom-model-guide) with `vmanomaly`.
- Define queries for input data using [MetricsQL](../../MetricsQL.md).
## Check also
Here are other materials that you might find useful:
- [Guide: Anomaly Detection and Alerting Setup](./guides/guide-vmanomaly-vmalert/README.md)
- [FAQ](./FAQ.md)
- [Changelog](./CHANGELOG.md)
- [Anomaly Detection Blog](https://victoriametrics.com/blog/tags/anomaly-detection/)