mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-12-31 15:06:26 +00:00
73fbce30bd
### Describe Your Changes Added config example for `min_dev_from_expected` arg; also, small styling fixes and alignments ### Checklist The following checks are **mandatory**: - [ ] My change adheres [VictoriaMetrics contributing guidelines](https://docs.victoriametrics.com/contributing/).
169 lines
10 KiB
Markdown
169 lines
10 KiB
Markdown
---
|
|
sort: 3
|
|
weight: 1
|
|
title: Presets
|
|
menu:
|
|
docs:
|
|
parent: "anomaly-detection"
|
|
weight: 1
|
|
title: Presets
|
|
---
|
|
# Anomaly detection presets
|
|
> Please check the [Quick Start Guide](/anomaly-detection/quickstart/) to install and run `vmanomaly`
|
|
|
|
> Presets are available starting from [v1.13.0](/anomaly-detection/CHANGELOG/#v1130)
|
|
|
|
|
|
**Preset** mode allows for simpler configuration and anomaly detection with `vmanomaly` on widely-recognized metrics, such as those generated by [node_exporter](https://github.com/prometheus/node_exporter), which are typically challenging to monitor using static threshold-based alerting rules.
|
|
|
|
This approach represents a paradigm shift from traditional [static threshold-based alerting rules](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#rule-based-alerting), focused on *raw metric values*, to *static* rules based on [`anomaly_scores`](/anomaly-detection/faq/#what-is-anomaly-score). These scores offer a consistent, default threshold that remains stable over time, being adjusted for trends, seasonality, data scale, thus, reducing the engineering effort required for maintenance. Anomaly scores are produced by [machine learning models](/anomaly-detection/components/models), which are regularly retrained on varying time frames, ensuring alerts remain current and responsive to evolving data patterns.
|
|
|
|
Additionally, **preset mode** minimizes user input needed to run the service. You can configure `vmanomaly` by specifying only the preset name and data sources in the [`reader`](/anomaly-detection/components/reader/) and [`writer`](/anomaly-detection/components/writer/) sections of the configuration file. All other parameters are already preconfigured.
|
|
|
|
|
|
Available presets:
|
|
- [Node-Exporter](#node-exporter)
|
|
|
|
Here is an example config file to enable [Node-Exporter](#node-exporter) preset:
|
|
|
|
```yaml
|
|
preset: "node-exporter"
|
|
reader:
|
|
datasource_url: "http://victoriametrics:8428/" # your datasource url
|
|
# tenant_id: '0:0' # specify for cluster version
|
|
writer:
|
|
datasource_url: "http://victoriametrics:8428/" # your datasource url
|
|
# tenant_id: '0:0' # specify for cluster version
|
|
```
|
|
Run a service using config file with one of the [available options](/anomaly-detection/quickstart/#how-to-install-and-run-vmanomaly).
|
|
|
|
After you run `vmanomaly` with `preset` arg specified, available assets can be viewed, copied and downloaded at `http://localhost:8490/presets/` endpoint.
|
|
|
|
<img alt="preset-localhost" src="presets-localhost.webp" width="800px"/>
|
|
|
|
## Node-Exporter
|
|
|
|
> **Note: Preset assets can be also found [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/)**
|
|
|
|
For enabling Node-Exporter in config file use `preset` parameter:
|
|
```yaml
|
|
preset: "node-exporter"
|
|
```
|
|
|
|
### Generated anomaly scores
|
|
Machine learning models will be fit for each timeseries, returned by underlying [MetricsQL](https://docs.victoriametrics.com/metricsql/) queries.
|
|
Anomaly score metric labels will also contain [model classes](/anomaly-detection/components/models/) and [schedulers](/anomaly-detection/components/scheduler/) for labelset uniqueness.
|
|
|
|
Here's an example of produced metrics:
|
|
|
|
```shell
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="system", model_alias="prophet", scheduler_alias="1d_1m"} 0.23451242720277776
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="user", model_alias="prophet", scheduler_alias="1d_1m"} 0.2637952255694444
|
|
anomaly_score{for="page_faults", instance="node-exporter:9100", job="node-exporter", preset="node-exporter", model_alias="prophet", scheduler_alias="1d_1m"} 0.00593712535
|
|
anomaly_score{for="read_latency", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.27773362795333334
|
|
anomaly_score{for="receive_bytes", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.037753486136666674
|
|
anomaly_score{for="transmit_bytes", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.17633085235
|
|
anomaly_score{for="write_latency", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.019314370926666668
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="mad", scheduler_alias="1d_1m"} 4.2323617935
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="mad", scheduler_alias="2w_1m"} 1.5261359215
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="prophet", scheduler_alias="2w_1m"} 0.5850743651
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="z-score", scheduler_alias="1d_1m"} 1.6496064663
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="z-score", scheduler_alias="2w_1m"} 0.924392581
|
|
anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="iowait", model_alias="mad", scheduler_alias="1d_1m"} 0.8571428657
|
|
...
|
|
```
|
|
|
|
### Alerts
|
|
> For optimal alerting experience, we include [Awesome alerts](https://github.com/samber/awesome-prometheus-alerts) to cover indicators not addressed by the preset, as static thresholds can effectively complement our machine learning approach.
|
|
|
|
> Provided `vmanomaly` alerts are set to fire only if *all anomaly detection models* vote that the datapoint is anomalous.
|
|
|
|
You can find corresponding alerting rules here:
|
|
- `vmanomaly` [Anomaly Detection alerts](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/vmanomaly_alerts.yml): `http://localhost:8490/presets/vmanomaly_alerts.yml`
|
|
- [Modified Awesome Alerts](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/awesome_alerts.yml): `http://localhost:8490/presets/awesome_alerts.yml`
|
|
|
|
#### Awesome Alerts replaced by Machine Learning alerts
|
|
- HostMemoryUnderMemoryPressure
|
|
- HostContextSwitching
|
|
- HostHighCpuLoad
|
|
- HostCpuIsUnderutilized
|
|
- HostCpuStealNoisyNeighbor
|
|
- HostCpuHighIowait
|
|
- HostNetworkReceiveErrors
|
|
- HostNetworkTransmitErrors
|
|
- HostUnusualNetworkThroughputIn
|
|
- HostUnusualNetworkThroughputOut
|
|
|
|
### Grafana dashboard
|
|
Grafana dashboard `.json` file can be found [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/dashboard.json): `http://localhost:8490/presets/dashboard.json`
|
|
|
|
### Indicators monitored by preset
|
|
|
|
The produced anomaly scores will have a label `for` containing the name of corresponding indicator.
|
|
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Indicator</th>
|
|
<th>Based on metrics</th>
|
|
<th>Description</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td><code>page_faults</code></td>
|
|
<td><code>node_vmstat_pgmajfault</code></td>
|
|
<td>Number of major faults that have occurred since the last update. Major faults occur when a process tries to access a page in memory that is not currently mapped in the process's address space, and it requires loading data from the disk.</td>
|
|
</tr>
|
|
<tr>
|
|
<td><code>context_switch</code></td>
|
|
<td><code>node_context_switches_total</code></td>
|
|
<td>This metric represents the total number of context switches across all CPUs.</td>
|
|
</tr>
|
|
<tr>
|
|
<td><code>cpu_seconds_total</code></td>
|
|
<td><code>node_cpu_seconds_total</code></td>
|
|
<td>Total amount of CPU time consumed by the system in seconds by CPU processing mode (e.g., user, system, idle).</td>
|
|
</tr>
|
|
<tr>
|
|
<td><code>host_network_receive_errors</code> & <code>host_network_transmit_errors</code></td>
|
|
<td><code>node_network_receive_errs_total</code>, <code>node_network_receive_packets_total</code>, <code>node_network_transmit_errs_total</code>, <code>node_network_transmit_packets_total</code>
|
|
<td>Total number of errors encountered while receiving/transmitting packets on the network interfaces of a node.</td>
|
|
</tr>
|
|
<tr>
|
|
<td><code>receive_bytes</code> & <code>transmit_bytes</code></td>
|
|
<td><code>node_network_receive_bytes_total</code>, <code>node_network_transmit_bytes_total</code></td>
|
|
<td>Total number of bytes received/transmitted on network interfaces of a node.</td>
|
|
</tr>
|
|
<tr>
|
|
<td><code>read_latency</code> & <code>write_latency</code></td>
|
|
<td><code>node_disk_read_time_seconds_total</code>, <code>node_disk_reads_completed_total</code>, <code>node_disk_write_time_seconds_total</code>, <code>node_disk_writes_completed_total</code></td>
|
|
<td>Disk latency. The total read/write time spent in seconds. / The total number of reads/writes completed successfully.</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
## Example
|
|
|
|
Here's how attached [Grafana dashboard](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/dashboard.json) can be used to drill down anomalies:
|
|
|
|
On the (global) graph **'Percentage of Anomalies'**, you can see a spike 8.75% of anomalies at the timestamp '2024-06-03 10:35:00'. The (global) graph **'Anomalies per Indicator'** shows the indicators that were anomalous at the corresponding time.
|
|
|
|
<img alt="global" src="presets_global_percentage.webp" width="800px"/>
|
|
|
|
At this timestamp on the **'Number of Anomalous Indicators by Node'** graph we can identify the node that had the most anomalies: `10.142.0.27`
|
|
|
|
<img alt="by_node" src="presets_anomalies_by_node.webp" width="800px"/>
|
|
|
|
Now you can select anomalous node to drill down further (local):
|
|
|
|
<img alt="anomalous_node_selection" src="presets_anomalous_node_selection.webp" width="800px"/>
|
|
|
|
For this node from the timestamp `2024-06-03 10:35:00` CPU time spent handling software interrupts started to grow.
|
|
(`cpu_seconds_total{mode="softirq"}`)
|
|
|
|
<img alt="irq" src="presets_cpu_seconds_softirq.webp" width="800px"/>
|
|
|
|
At the same time `cpu_seconds_total` for `steal` mode started to grow as well.
|
|
|
|
<img alt="steal" src="presets_cpu_seconds_steal.webp" width="800px"/>
|